Курсовой проект по предмету Химия

  • 121. Производство красителя дисперсного синего 2 полиэфирного
    Курсовые работы Химия
  • 122. Производство красителя органического кислотного синего 2К
    Курсовые работы Химия

    № п/пНомер по схемеНаименованиеКоличествоМатериалХарактеристика, маркаРазмеры, мм. Объем, м311Приемная емкость соляной кислоты1Винипласт (ст,футер.)Горизонтальная, цилиндрическаяD = 2000мм H = 5460 мм 1 м322Напорный бак соляной кислоты1Стеклопл.Горизонтальный, цилиндрическийD = 2000 мм H = 5600мм 1 м333Аппарат для приема и приготовления раствора нитрита натрия1Ст,футер.Вертикальный, цилиндрический, с лопастной мешалкойН = 4150 мм 1м344Приемная емкость едкого натра1Ст. футер.Вертикальный, цилиндрическийD = 2600 мм H = 2100 мм 0,025 м355Напорный бак раствора нитрита натрия1Ст. футер.Вертикальный цилиндрический с коническим днищемD = 2400 мм H = 3200 мм 0,022 м366Напорный бак едкого натра1Ст.футер.Вертикальный цилиндрический с коническим днищемD = 2200 мм H = 3200 мм 10 м377Промежуточный бачок1СтальВертикальный цилиндрический с плоским дном, с выносным мерным стеклом1 м388Центробежный насос2графитТип Х45/31-Г-00У4 с электродвигателем99Аппарат для диазотирования1Ст. футер.Вертикальный, цилиндрический, снабжен рамной мешалкой, змеевиком для охлаждения рассоломD = 2460 мм Н = 1470 мм 1 м31011Мерник едкого натра1СтальВертикальный, цилиндрический, с мерным стекломD = 450 мм Н = 1000 мм 0,025 м31112Мерник раствора нитрита натрия1СтальВертикальный, цилиндрический, с мерным стекломD = 700 мм Н = 1300 мм 0,025 м31213Мерник соляной кислоты1ВинипластВертикальный, цилиндрический, с мерным стекломD = 800 мм Н = 1400 мм 0,063 м31314Аппарат для сочетания (получения красителя)1Ст. футер.Вертикальный, цилиндрический, снабжен мешалкой, барботером для нагрева паромD = 3000 мм Н = 2700 мм 16,6 м31415Аппарат для разбавления (для подачи суспензии на фильтрацию)1Ст.футер.Вертикальный, цилиндрический с лопастной мешалкой, снабжен барботером для нагрева паром20 м3

  • 123. Производство медного купороса из медного лома
    Курсовые работы Химия

    ПриходРасходСтатьи приходаКоличество, кгСтатьи расходаКоличество, кгМедь в гранулах…... Вода в гранулах…… Орошающая жидкость: CuSO4*5H2O……….. H2SO4 ……………… H2O…………………25,2260 1,3277 42,8733 7,8833 129,4633Медь в отвал………. Раствор на кристаллизацию: CuSO4·5H2O………... H2SO4………………. H2O…………………. Нерастворимый остаток…………...0,1260 140,9829 8,1358 144,4951 0,1000Итого маточника……… Купоросное масло: H2SO4 …………... H2O……………… 180,2199 39,0258 3,1643Итого раствора на кристаллизацию…… Потери жидкости: CuSO4*5H2O……….. H2SO4………………. H2O…………………. 293,7138 0,4930 0,0285 0,5056Итого купоросного масла……………. Вода…………….. 42,1901 39,0659Итого потери жидкости…………… 1,0271Итого орошающей жидкости………. Паро - воздушная смесь: O2…………………… N2…………………… H2O…………………. 262,0759 21,5567 71,3600 48,9667Отходящие газы: O2………………........ N2………………........ H2O…………………. 20,9246 71,3600 43,5200Итого паро - воздушной смеси……………….. Механические примеси из гранул и т.д………………… 141,8834 0,1000Всего………………..430,0130Всего………………...430,7716

  • 124. Производство синтетического пантотената кальция (витамина В3)
    Курсовые работы Химия

    Пантотеновая кислота (витамин В3) открыта Р. Вильямсом в 1933 г. Она была им охарактеризована как стимулятор роста дрожжей. Название свое витамин В3 получил от греческого термина "вездесущий", так как пантотеновая кислота была обнаружена почти во всех растительных и животных тканях. Хорошими источниками витамина В3 являются дрожжи, отруби риса, печень. В печени содержание пантотеновой кислоты составляет 10 мг в 1 кг. В 1939 г. было установлено, что цыплячий фактор и пантотеновая кислота идентичны. При недостатке пантотеновой кислоты цыплята заболевают пеллагрой; вследствие этого пантотеновая кислота вначале была названа цыплячьим фактором . Установлено, что добавление в рацион домашней птицы этого фактора приводит к значительному увеличению их массы и к повышению яйценоскости. В 19451947 гг. Липманом с сотрудниками был открыт коэнзим А (от слова ацетилирование), участвующий в ацетилировании холина в ацетил-холин и в других реакциях ацетилирования, причем было доказано, что зтот коэнзим содержит пантотеновую кислоту. Дальнейшее изучение показало, что в состав молекулы коэнзима А входят монофосфорный эфир пантотеновой кислоты, адениннуклеотид и 2-меркаптоэтиламин. Кофермент А также участвует в окислительном распаде жирных кислот и играет большую роль в образовании фосфолипидов. Пантотеновая кислота благоприятно влияет на водный обмен, на усвоение глюкозы. Имеется также указание на ее защитные действия при радиоактивном облучении. Таким образом, пантотеновая кислота имеет широкие перспективы применения в профилактической и клинической практике, а также в сельском хозяйстве. Суточная потребность человека в пантотеновой кислоте составляет 512 мг . При конденсации пантотеновой кислоты с -меркаптоэтиламином образуется пантотетин, который в 100 раз активнее пантотеновой кислоты

  • 125. Производство уксусной кислоты
    Курсовые работы Химия

    Уксусная кислота применяется также для производства лекарственных средств. Таблетки Аспирина (ЭС) содержат активный ингредиент ацетилсалициловую кислоту, которая представляет собой уксусный эфир салициловой кислоты. Ацетилсалициловая кислота производится путём нагревания салициловой кислоты с безводной уксусной кислотой в присутствии небольшого количества серной кислоты (в качестве катализатора).При нагревании с гидроксидом натрия (NaOH) в водном растворе ацетилсалициловая кислота гидролизуется до салицилата натрия и ацетата натрия. При закислении среды салициловая кислота выпадает в осадок и может быть идентифицирована по температуре плавления (156-1600С). Другим методом идентификации салициловой кислоты, образующейся при гидролизе, является окрашивание её раствора в тёмно-фиолетовый цвет при добавлении хлорида железа (FeCl3). Уксусная кислота, присутствующая в фильтрате, превращается при нагревании с этанолом и серной кислотой в этоксиэтанол, который можно легко распознать по его характерному запаху. Кроме того, ацетилсалициловая кислота может быть идентифицирована при помощи различных хроматографических методов. Ацетилсалициловая кислота кристаллизуется с образованием бесцветных моноклинных многогранников или игл, немного кислых на вкус. Они стабильны в сухом воздухе, однако во влажной среде постепенно гидролизуются до салициловой кислоты и уксусной кислоты (Leeson и Mattocks, 1958; Stempel,1961). Чистое вещество представляет собой белый кристаллический порошок, почти не обладающий запахом. Запах уксусной кислоты свидетельствует о том, что вещество начало гидролизоваться. Ацетилсалициловая кислота подвергается эстерификации под действием щелочных гидроксидов, щелочных бикарбонатов, а также в кипящей воде.

  • 126. Производство экстракционной фосфорной кислоты
    Курсовые работы Химия

    Пример 1. В экстрактор подают 47 кг/ч фоссырья (фосфориты Каратау), 45 кг/ч 93% -ной серной кислоты и 215 кг/ч оборотного раствора фосфорной кислоты (14,8% Р2О5), содержащего 3 мас. % затравочных кристаллов. В результате реакции получают = 300 кг/ч фосфорнокислой пульпы с Ж: Т = 2,5: 1, а из экстрактора испаряется 7 кг/ч паров воды и фтористых соединений. Полученная фосфорнокислая пульпа подается в верхнюю отстойную зону в количестве 300 кг/ч, где осуществляется ее первичное отстаивание с получением в сливе 65 кг/ч 21% -ной экстракционной фосфорной кислоты. При диаметре верхней отстойной части 0,5 м скорость восходящего потока составляет 0,3 м/ч. Сгущенная пульпа поступает в промежуточную отстойную зону, где разбавляется оборотной промывной водой. Снизу противотоком к оседающему фосфогипсу в отстойник поступает поток промывной воды, ждущий из ствола колонны. Промежуточный отстойник выполняет роль, как отстойника, так и смесителя, откуда в качестве слива отводится 215 кг/ч оборотной фосфорной кислоты с концентрацией 14,8% Р2О5. При диаметре промежуточной отстойной зоны 0,75 м и указанных потоках, скорость восходящего потока составляет 0,4 м/ч, что обеспечивает вынос со сливом 6 кг/ч (3% твердого в оборотной ЭФК) кристаллов фосфогипса. Оборотный раствор ЭФК направляется в экстрактор, а осаждающийся фосфогипс из промежуточной отстойной зоны попадает в зону основной отмывки (колонная часть аппарата). По колонне D = 0,2 м за счет подачи в ее нижнюю часть 10 л/ч свежей промывной воды формируется восходящий поток со скоростью 0,3 м/ч, который, с одной стороны, препятствует распространению собственно фосфорной кислоты в зону отмывки, с другой - пропускает осадок фосфогипса, поскольку все кристаллы со скоростью осаждения меньше 09,4 м/ч вынесены со сливом промежуточного отстойника. Промывка фосфогипса в колонной части аппарата осуществляется при наличии восходящего потока промывной воды за счет возвратно-поступательных колебаний (пульсации) столба суспензии на массобменных элементах (тарелки "кримз"). Высота промывной зоны (колонной части аппарата) составляет 8,8 м. Отмытый фосфогипс поступает в нижнюю отстойную зону, куда подается 90 л/ч промывной воды для разбавления суспензии до Ж: Т = 1,15: 1 и транспортировки ее на фильтрацию. С фильтра снимается 120 кг/ч отмытого осадка фосфогипса с влажностью 33% и содержанием в жидкой фазе 0,5 % Р2О5, а отфильтрованные промывные воды в количестве 52 кг/ч направляются на разбавление в промежуточную отстойную зону.

  • 127. Процесс алкилирования на примере получения этилбензола в присутствии катализатора хлорида алюминия
    Курсовые работы Химия

    После конденсации и расслаивания во флорентийском сосуде 2 верхний слой (обводненный бензол) поступает в ректификационную колонну 1, а нижний слой (вода), содержащий бензол, направляется в отгонную колонну 3. Каталитический комплекс готовится в аппарате 4 с мешалкой и «рубашкой», куда подается бензол, а также хлорид алюминия, этилхлорид и полиалкилбензолы. Максимальной активностью обладают комплексы, получаемые на шихте, в которой мольное соотношение бензол: алкилбензолы составляет (3-5): 1. Мольное соотношение хлорид алюминия ароматические углеводороды составляет 1: (2,5 - 3). Катализаторным раствором заполняется реактор, а затем в ходе процесса для подпитки подают катализаторный раствор, так как он частично выводится из реактора при регенерации. Реактором служит колонный аппарат, отвод теплоты в котором осуществляется за счет подачи охлажденного сырья и испаряющегося бензола. Катализаторный раствор, осушенный бензол и этан - этиленовую фракцию подают в нижнюю часть реактора 5. После барботажа из реактора выводят не прореагировавшую парогазовую смесь и направляют ее в конденсатор 6, где прежде всего конденсируется бензол, испарившийся в реакторе. Конденсат возвращается в реактор, а несконденсированные газы, содержащие значительное количество бензола, особенно при использовании разбавления олефина, и НСl поступают в нижнюю часть скруббера поглощения бензола 8, орошаемого полиалкилбензолами для улавливания бензола. Раствор полиалкилбензола направляется в реактор, а не сконденсированные газы поступают в скруббер 9, орошаемый водой для улавливания НСl. Водный раствор НС1 направляется на нейтрализацию, а газы - на утилизацию теплоты. Катализаторный раствор вместе с продуктами поступают в отстойник 7, нижний слой которого возвращается в реактор, а верхний слой с помощью насоса 10 направляется в нижнюю часть скруббера 11. Скрубберы 11 и 13 предназначены для отмывки НС1 и А1Сl3, растворенных в алкилате. Скруббер 11 орошается раствором щелочи, который перекачивается насосом 12. Для потпитки в ре-циркуляционный поток щелочи подают свежую щелочь в том количестве, которое расходуется на нейтрализацию НС1. Далее алкилат поступает в нижнюю часть скруббера 13, орошаемого водой, которая вымывает щелочь из алкилата. Водный раствор щелочи направляется на нейтрализацию, а алкилат через подогреватель 14 на ректификационную колонну 15. В колонне 15 выделяется в виде дистиллята бензол вместе с растворенной водой. Выделившийся бензол направляется в ректификационную колонну 1 для обезвоживания, а кубовый остаток - на дальнейшее разделение. Кубовый продукт из колонны 15 направляется в ректификационную колонну 16 для выделения в качестве дистиллята продуктов этилбензола. Кубовый продукт колонны 16 направляется в ректификационную колонну 17 для разделения полиалкилбензолов на две фракции. Колонна 17 работает под вакуумом 5,3 кПа. Верхний продукт направляется в аппарат 4 и реактор 5, а нижний продукт (смолы) выводится из системы. Основным недостатком этой технологии является отсутствие регенерации теплоты реакции, которая отводится с водой в конденсаторе 6.

  • 128. Процесс пленкообразования модифицированных олигобутадиенов из органических и водных систем
    Курсовые работы Химия

    Наличие в цепи модифицированных олигобутадиенов рефкционноспособных функциональных групп и двойных связей обуславливает их способность к отверждению под действием тепла или отверждающих агентов, как из органических, так и водных плёнкообразующих систем. Важнейшим свойством жидких ненасыщенных каучуков является их способность к плёнкообразованию. Сведения о плёнкообразовании модифицированных олигобутадиенов- эпоксидированных каучуков со статистическим распределением ЭГ и продуктов их модификации аминами в литературе крайне ограничены. Ранее показано, что ЭОД со статистическим распределением ЭГ проявляют высокую активность с отвердителями кислотного типа в отличии от широко используемых диеновых эпоксидных смол с концевыми ЭГ. На скорость плёнкообразования каучуков оказывают влияние микроструктура, тип отверждающего и аминирующего агентов, степень модификации и температура отверждения. Нами проведено исследование процесса отверждения ЭОД в присутствии перспективных современных отвердителей - фосфорной (ОФК), борной (БК), лимонной (ЛК), ацетилсалициловой (АЦ), аскорбиновая (АСК), а так же биологически активная азот содержащая карбоновая кислота.

  • 129. Процессы и аппараты химической технологии
    Курсовые работы Химия

    Выпаривание под вакуумом имеет определенные преимущества перед выпариванием при атмосферном давлении, несмотря на то что теплота испарения раствора несколько возрастает с понижением давления и соответственно увеличивается расход пара на выпаривание 1 кг растворителя (воды). Применение вакуума дает возможность проводить процесс при более низких температурах, что важно в случае концентрировании растворов веществ, склонных к разложению при повышенных температурах. Также дает возможность использовать в качестве греющего агента, кроме первичного пара вторичный пар самой выпарной установки, что снижает расход первичного греющего пара. Вместе с тем при применении вакуума удорожается выпарная установка, поскольку требуются дополнительные затраты на устройства для создания вакуума (конденсаторы, ловушки, вакуум-насосы), а так же увеличиваются эксплуатационные расходы.

  • 130. Прочносвязанные полисахариды в клеточных стенках ксиланового типа
    Курсовые работы Химия

     

    1. Керне, А. Жизнь растений. / А.Керне// СПб.: Просвещение, 1906. Т. 2. 838с.
    2. Полевой, В.В. Физиология растений. / В.В.Полевой// М.: Высшая школа, 1989. 464с.
    3. Brett, C.T. Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall / C.T.Brett// Int. Rev. Cytol. 2000. V. 199. P. 6199.
    4. Chivasa, S., Proteomic analysis of the Arabidopsis thaliana cell wall / S. Chivasa, B.K.Ndimba, W.J.Simon, D. Robertson, X.L.Yu, J.P.Knox, P. Bolwell, A.R.Slabas// Electrophoresis. 2002. V. 23. P. 17541765.
    5. Cosgrove, D.J. Group I allergens of grass pollen as cell wall-loosening agents / D.J.Cosgrove, P.A.Bedinger, D.M.Durachko// Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 65596564.
    6. Delmer, D. Cellulose biosynthesis: exciting times for a difficult field of study / D. Delmer// Plant Physiol. Plant Mol. Biol. 1999. V. 50. P. 245276.
    7. DeWitt, G. Comparative compositional analysis of walls with two different morphologies: archetypical versus transfer-cell-like / G. DeWitt, J. Richards, D. Mohnen, A.M.Jones / Protoplasma. 1999. V. 209. №3/4. P. 238245.
    8. Frey-Wissling, A. Submicroscopic morphology of protoplasm and its derivatives. / A. Frey-Wissling.// N.Y.: Elsevier. 1948. 47 p.
    9. Fry, S.C. The growing plant cell wall: chemical and metabolic analysis. / S.C.Fry// London: Longman Sci. and Technic. 1988. 333 p.
    10. Fry, S.C., Xyloglucan endotransglucosylase, a new wall-loosening enzyme activity from plants / S.C.Fry, R.C.Smith, K.F.Renwick, D.J.Martin, S.K.Hodge, K.J.Matthews// Biochem. J. 1992. V. 282. P. 821828.
    11. Gaspar, T., Peroxidases 19701980: A survey of their biochemical and physiologic roles in higher plants. / T. Gaspar, C. Penel, T. Thorpe, H. Greppin.// Switzerland: University of Geneva Press. 1982. P. 60121.
    12. Gaspar, Y., The complex structures of arabinogalactan-proteins and the journey towards understanding function / Y. Gaspar, K.L.Johnson, J.A. McKenna, A. Bacic, C.J.Schultz// Plant Mol. Biol. 2001. V. 47. P. 161176.
    13. Jarvis, M.C. Control of thickness of collenchyma cell walls by pectins / M.C.Jarvis// Planta. 1992. V. 187. P. 218220.
    14. Jose-Estaniol, M., Plant cell wall glycoproteins and their genes / M. Jose-Estaniol, P. Puigdomenech// Plant Physiol. Biochem. 2000. V. 38. №1/2. P. 97108.
    15. Lamport, D.T.A. The protein component of primary cell walls / D.T.A.Lamport// Adv. Bot. Res. 1965. V. 2. P. 151218.
    16. Lamport, D.T.A., The use of tissue cultures for the study of plant cell walls / D.T.A.Lamport, D.H.Northcote// Biochem. J. 1960. V. 76. P. 52.
    17. Mohnen, D. Biosynthesis of pectins and galactomannans / D. Mohnen// Comprehensive Natural Products Chemistry / Eds PintoB.M., BartonD.H.R., Meth-Cohn O. Oxford: Elsevier. 1999. P. 497527.
    18. Mohnen, D. Biosynthesis of pectins and galactomannans / D. Mohnen// Comprehensive Natural Products Chemistry / Eds PintoB.M., BartonD.H.R., Meth-Cohn O. Oxford: Elsevier. 1999. P. 497527.
    19. Nishitani, K., Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule / K. Nishitani, R. Tominaga// J. of Biol. Chem. 1992. V. 267. P. 2105821064.
    20. Saxena, I.M., Cellulose biosynthesis: current works and evolving concepts / I.M.Saxena, R.M.Brown// Ann. Bot. 2005. V. 96. №1. P. 921.
    21. Schroder, R., Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants / R. Schroder, T.F.Wegrzyn, K.M.Bolitho, R.J.Redgwell // Planta. 2004. V. 219. P. 590600.
    22. Schroder, R., LeMAN4 endo-beta-mannanase from ripe tomato fruit can act as a mannan transglycosylase or hydrolase / R. Schroder, T.F.Wegrzyn, N.N.Sharma, R.G.Atkinson // Planta. 2006. V. 224. P. 10911102.
  • 131. Равновесные и поляризационные диаграммы потенциал-pH
    Курсовые работы Химия

    На рис. 1.6.1. схематически показаны пять потенциодинамических поляризационных кривых для железа в растворе хлорида при pH 5, 7, 9, 11 и 13 соответственно. Совмещением особых точек этих кривых справа можно получить поляризационную диаграмму железа, на которой отображены экспериментальные условия иммунности (невосприимчивости), общей коррозии, питтинговой коррозии, пассивности и неустойчивой пассивности, как функцию потенциала и pH. Потенциал, разделяющий области невосприимчивости и общей коррозии, - стационарный или коррозионный (Ec) потенциал. Потенциал, разделяющий область общей коррозии и пассивности, - потенциал пассивации (Ea). При потенциалах положительнее Ea на металле образуется защитная пленка окислов. Потенциал Epp (потенциал питтингообразования) потенциал, выше которого металл подвергается питтинговой коррозии. При питтинге наблюдается очень быстрое активное растворение металла на определенных участках его поверхности (в коррозионных язвах, или питтингах), в то время как другие участки поверхности металла остаются в пассивном состоянии. Ep критический защитный потенциал (потенциал репассивации питтингов). При потенциалах отрицательнее Ep уже имеющиеся питтинги не будут расти дальше и поврежденная пассивационная пленка будет восстановлена. Линия, отвечающая потенциалам репассивации питтингов Ep, разделяет область пассивности на две части: верхнюю область неустойчивой пассивности, в которой уже имеющиеся язвы продолжают расти, и нижняя- полной (устойчивой) пассивности, в которой ранее образовавшиеся питтинги восстанавливают свою пассивность.

  • 132. Разложение клетчатки микроорганизмами
    Курсовые работы Химия

    Это совпадает с наблюдениями других авторов о большей устойчивости ацетилированной целлюлозы по отношению к бактериологическому воздействию и о большей прочности отбеленного хлопка по сравнению с неотбеленным, а также согласуется с тем фактом, что некоторые виды хлопка более устойчивы к микробиологическому разрушению, чем другие. Самый прочный хлопок американский, наименее прочный индийский. Тэйсен с сотрудниками установили, что на микробиологически активных почвах ацетилцеллюлозные волокна полностью устойчивы, тогда как целлюлоза, шерсть и шелк разрушаются. Хлопчатобумажные и шерстяные ткани, выдержанные в тени в условиях очень влажного тропического климата, разрушаются значительно медленнее, чем при испытании путем закапывания в почву, хотя поверхность у них сильно обрастает. Одногодичное пребывание в тени в субтропическом и умеренном климате с водяными осадками около 75 см в год не оказывает заметного влияния на прочность волокна на разрыв. Ткани, выставленные на солнечный свет, биологически меньше повреждаются чем те, которые оставались в тени, хотя при этом обнаруживают большую потерю прочности в результате химического распада целлюлозы. Фаргер отмечает, что сырой хлопок содержит главные минеральные вещества (К, Na, Ca, Mg), значительно способствующие росту плесневых грибов. В нем имеются также главные микроэлементы (Fe, Cu,. Zn), стимулирующие рост определенных микроорганизмов. Большинство металлов находится в форме солей органических кислот; соли растворимы в воде и потому быстро поглощаются микроорганизмами. Кроме того, имеются в наличии сульфаты, фосфор, глюкоза, глициды и азотистые вещества. Все они стимулируют рост грибов. Различия в их концентрации причина разной степени агрессивности микроорганизмов в отношении волокна в условиях повышенной влажности. Вещества, применяемые для отделки волокна, служат для микроорганизмов также источниками азота и углерода. Удаление из волокна водорастворимых веществ, стимулирующих рост микроорганизмов, повышает устойчивость тканей к микробиологической агрессии. Так, обезжиренный или отбеленный хлопок, как и двукратно прокипяченная или прокипяченная и отбеленная пряжа, менее подвержен плесневению, чем небеленый хлопок. Бергхурн занимался широкими испытаниями на открытом воздухе в зоне Панамского канала, во Флориде и в Новой Гвинее. Хлопчатобумажное волокно на Панамском канале потеряло около 70 % прочности на разрыв после одногодичного выдерживания в тени. При закапывании в почву полная потеря прочности происходила в течение 67 недель. Во Флориде после 42-недельного выдерживания хлопчатобумажное волокно теряло приблизительно 40% начальной прочности на разрыв при экспозиции в тени и 70% на солнце. Басу пришел к заключению, что наибольшей устойчивостью обладает джут, затем хлопок и наименьшей фильтровальная бумага. Предполагается, что джут содержит как антибиотики, так и стимуляторы (вещества, подобные витаминам). Экстракты джутовых волокон повышают устойчивость по отношению к плесневым грибам. Басу и Гоз показали, что лигнин, содержащийся в джуте, оказывает сильное защитное действие на остальные соединения в джутовом волокне, а джут без лигнина значительно менее устойчив, чем хлопок. Эта малая устойчивость вызывается наличием гемицеллюлозы.

  • 133. Разработка дополнительных занятий в школе к теме "Химизм различных способов приготовления пищи"
    Курсовые работы Химия

     

    1. Буглович С.Ю., Дублецкая М.М. Химические вещества и качество продуктов. Минск: Ураджай, 1986.
    2. Быков В.П. Изменения мяса рыбы при холодильной обработке. М.: Агропромиздат, 1987.
    3. Грищенко А.Д. Сливочное масло. М.: Легкая и пищевая промышленность, 1983.
    4. Казаков Е.Д., Кретович В.Л. Биохимия зерна и продуктов его переработки. М.: Агропромиздат, 1989.
    5. Кишковский 3.Н., Скурихин И.М. Химия вина. М.: Агропромиздат, 1988.
    6. Несмеянов А.Н., Беликов В.М. Пища будущего. М.: Педагогика, 1985.
    7. Нечаев А.П. Органическая химия. М.: Высшая школа, 1988.
    8. Нечаев А.П.. Сандлер Ж.Я. Липиды зерна. М.: Колос, 1975.
    9. Павлоцкая Л.Ф., Дуденко Н.В.. Эдельман М. М. Физиология питания. М.: Высшая школа, 1989.
    10. Ржавская Ф.М. Жиры рыб и морских млекопитающих. М.: Пищевая промышленность, 1976.
    11. Состав и свойства молока как сырья для молочной промышленности. Справочник. М.: Агропромиздат, 1986.
    12. Тепел А. Химии и физики молока. - М.: Пищевая промышленность, 1979.
    13. Техническая биохимия /Под ред. В.Л. Кретовича. М.: Высшая школа, 1973.
    14. Технология сыра. Справочник. - М.: Легкая и пищевая промышленность, 1984.
    15. Толстогузов В.Б. Новые формы белковой пищи. М: Агропромиздат, 1987.
    16. Химический состав пищевых продуктов. Справочные таблицы содержания основных пищевых веществ и энергетической ценности пищевых продуктов /Под ред. И. М. Скурихина и М.Н. Волгарева. М.: Агропромиздат, 1987. Т. I.
    17. Химический состав пищевых продуктов. Том. II. Справочные таблицы содержания аминокислот, жирных кислот, витаминов, макро- и микроэлементов и углеводов /Под peд. И.М. Скурихина и М. Н. Волгарева. - М.: Агропромиздат, 1987.
    18. Химический состав пищевых продуктов. Том III. Справочные таблицы содержания основных пищевых веществ и энергетической ценности блюд и кулинарных изделий /Под ред. И.М. Скурихина и В.А Шатерникова. Том IV. M.: Легкая и пищевая промышленность, 1984.
    19. Скурихин И.М.. Шатерников В.А. Как правильно питаться. М.: Агропромиздат, 1986.
    20. Книга о вкусной и здоровой пище /Под ред. И.М. Скурихина. М.: Агропромиздат, 1990.
    21. http://ru.wikipedia.org/wiki/
    22. http://festival.1september.ru/articles/211481/
    23. http://image.websib.ru/04/method/liceum/article11.html
  • 134. Разработка нового метода синтеза алкалоидов азафеналенового ряда
    Курсовые работы Химия

    Некоторые из методов синтеза основаны на том факте, что метильная группа в соединениях 1-7 занимает наиболее термодинамически выгодное эквториальное положение [9, 10 11]. Так Айер и др. при разработке метода синтеза (±) - dihydrodeoxyepiallocernuine использовали следующий подход для получения 2-метилпергидро-9b-азафеналеновых алкалоидов myrrhine и hippodamine, (схема 1). Монолитийпроизводное 2,4,6-коллидина 8 обрабатывали 3-бромопропиональдегиддиметилацеталем с образованием 9. Далее при добавлении фениллития образуется анион, который взаимодействует с ацетонитрилом и дает кетон, из которого получили соответствующий ацеталь 10. Восстановление натрием в изоамиловом спирте дает смесь насыщенных стереоизомерных аминов 11, которые отхроматографировали, а затем сняли защитные группы с образованием 12. Нагревание 12 с 2 эквивалентами р-толуолсульфокислоты дает один продукт, кетон 13, с той же конфигурацией на всех стереогенных центрах, что и у myrrhine (5). Так как 13 является неустойчивым соединением, его сразу же преобразовали в тиокеталь 14, который восстанавливали с удалением серы над никелем Ренея с образованием myrrhine (5). Окислением m-CPBA был получен соответствующий N-оксид, идентичный природному N-оксиду myrrhine [10]. Интересно, что циклизация в мягких условиях (пирролидин, уксусная кислота) превращает 12 в смесь двух стереоизомерных кетонов. Получение соответствующих тиокеталей и последующая их десульфуризация дает смесь myrrhine (5) и (±) - hippodamine (3), последний был преобразован в N-оксид (±) - convergine (4). Общий выход 5 и 3 из 12 составил, соответственно, 33% и 23%.

  • 135. Разработка технологической схемы и реагентного режима флотации
    Курсовые работы Химия

    МинералРегулятор средыПенообразо-вательДепрессорАктиваторСобирательВспомогательные реагенты и опер-ииПирит FeS2H2SO4, CaO, Na2CO3Сосновое масло, ОПСБ, ОПСМ, аэрофросы, дауфрос 250 и др.Na2S, NaCN, СаО, KMnO4, эфиры целлюлозыNa2S, Na2CO3 , H2SO4 ,Na2SiFe 6Ксантогенаты, аэрофлоты, житные кислоты (в кислых средах)CuSO4Галенит PbSNa2C03ОПСБ и др.NaSNaSКсантогенаты, аэрофлоты-Сфалерит ZnS Na2CO3,H2SO4 Сосновое маслоCaO(pH>11,3) KMnO4, O2, Na2S (избыток), CuSO4, Na2SКсантогенаты, аэрофлоты-Аргентит Ag2S Na2CO3, H2SO4 NaOHОПСБ, крезол, сосновое масло, эфиры ?-алко-ксикротоновой кислотыСаО, Na2CO3, Na2S, NaCN,Na2SiO3(частч-но) H2SO4 (для пульп плотностью более 20%) Na2SiF6, Hg2(NO3)2*2H2O, Hg(NO3)2*2H2OКсантогенаты, аэрофлоты, дитиокарбаматы, каменноугольный крезол, дитиофосфаты и др.Na2SiO3, активированный уголь,нитрат ртути или свинца (способствуют флотации золота)Тетрадимид Bi2Te2S Na2CO3 NaНS Аполярные собирателиХризоколла CuSiO3*nH2O H2SO4, Na2CO3Сосновое масло, ОПСБ, торфяная смола, аэрофросыOH-, S-2, O2, CuSO4 (при рН 4-7,4), CN- (при рН 3,5-7)CuSO4 (при рН>7,4), Pb(NO3)2, ацетат свинцаПенообразователи и масла (в кислой среде), ксантогенаты, аэрофлоты, дитиофосфаты, тиокарбанилиды (с активаторами)-Каламин Na2CO3 Нефтяные масла Na2S, избыток NaOH -Ксантогенаты, аэрофлоты, углеводородные масла. Сульфооксиды (при флотации Cu-Bi руд прод-ми сернокислой обработки нефти)-Магнетит Fe3O4Na2C03 , H2S04 - А1(N03)3, ZnS04 соли Fe2+ и Fe3+, СаО, крахмал Pb(N03)2Карбоновые кислоты и их мыла (наиболее активны олеиновая и олеат натрия при рН=7), таловое масло, нефтяные сульфонаты, додециламин, ветлужское масло -Кварц SiO2CaO, Na2SiO3 NaOH, HF, H2SO4Сосновое масло, спиртыЖидкое стекло, цианидыКатионы щелочноземельных и тяжелых метал.Жирные и нафтеновые кислоты и их мыла, аминыAl2+Fe3+ депрессоры при флотации аминамиБарит BaSO4HF-Na2S; смесь Na2S Na2C03 и NaOHОбработка HF; Pb(NO3)2 (при флот. олеиновой кислотойАмины (рН=2,1), олеиновая кислота (после активацииРекомендуется предварительно из влечь слюдуСлюда (мусковит) KAl[Al2Si3O10]·(OH)2H2S04 -Клей, крахмал, HF, Na2Si03, молочная и таниновая кислоты, R-610, R-615 и R-620 (содержат декстрин) Соли свинцаАмины (рН 4-6), нефтяные масла, крезиловый аэрофлот, олеиновая кислота (при низкой концентрации и введении солей свинца), гексадецилсульфат (рН 4-6), Инданы и алкилинданы (дополн. собиратели при флотации с алифатическими аминами) Сульфат алюминия (для депрессии прочих силикатов) фосфаты, обесшламливаниеФлюорит CaF2 Na2CO3 Na2CO3 NaCl, СаС12, CuCl2, соли аммония, ВаС12.2Н20 лимонная кислота Соли трехвалент ных металлов, NaFЖирные кислоты и их мыла, алкилсульфаты, аэрозоль ОТ (диоктил-сульфосукцинат натрия), аэрозоль МА (дигексил-сульфосукцинат натрия), игепон Т-2-олеиламино-этан-1-сульфонат натрия, катионные реагенты Монононил- или динонилфосфорные кислоты или их соли, четвертичные аммониевые основанияБихроматы, квебрахо, Na2Si02 танин, NaF при флотации флюорита жирными кислотами (для подавления криолита при рН 5,8-6, HN03)

  • 136. Распространение полисахарида инулина в растительном сырье
    Курсовые работы Химия

    Около 2 г (точная навеска) сырья залили 4 мл 96 % этилового спирта и выдерживали при комнатной температуре в течение двух дней. Затем пробу высушивали в сушильном шкафу при 150 °С в течение 30 минут. Высушенную пробу обугливали на электрической плитке (сначала на медленном огне, а затем на более сильном огне) до прекращения выделения дыма в течение 1,5 часа. После этого тигель помещали в холодную электропечь, и повышая ее температуру на 50 °С каждые полчаса, доводили температуру до 450 °С. При этой температуре продолжали минерализацию в течение 10 часов до получения серой золы. Для этого золу, охлажденную до комнатной температуры, смочили по каплям азотной кислоты (1:1), выпаривали на водяной бане, высушивали на электрической плитке. Прокаливали при 450 °С в течение 15-20 минут. Тигли с золой охладили в эксикаторе. Далее в тигель с озоленной пробой добавляли 1 мл соляной кислоты (1:1) и нагревали на водяной бане. Раствор выпаривали до влажных солей и растворили в 15 мл 1 %-ной соляной кислоты. Зола растворилась полностью. Раствор отфильтровали через промытый 1 % раствором соляной кислоты фильтр. Фильтрат перенесли в мерную колбу вместимостью 50 мл и довели до метки той же кислотой, как требуется по ГФ XI.

  • 137. Расчет вакуум-кристаллизатора для раствора MgSO
    Курсовые работы Химия

    ,%20%d1%81%d0%be%d0%b4%d0%b5%d1%80%d0%b6%d0%b0%d1%89%d0%b8%d0%b5%20%d0%bf%d1%80%d0%b8%d1%80%d0%be%d0%b4%d0%bd%d0%be-%d1%82%d0%b5%d1%85%d0%bd%d0%be%d0%b3%d0%b5%d0%bd%d0%bd%d1%8b%d0%b5%20%d0%b8%20%d1%82%d0%b5%d1%85%d0%bd%d0%be%d0%b3%d0%b5%d0%bd%d0%bd%d1%8b%d0%b5%20%d0%be%d0%b1%d1%80%d0%b0%d0%b7%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d1%8f.%20%d0%9a%d0%be%d1%82%d0%be%d1%80%d1%8b%d0%b5,%20%d0%b8%d1%81%d0%bf%d1%8b%d1%82%d1%8b%d0%b2%d0%b0%d1%8f%20%d0%b2%d0%be%d0%b7%d0%b4%d0%b5%d0%b9%d1%81%d1%82%d0%b2%d0%b8%d0%b5%20%d1%8d%d0%ba%d0%b7%d0%be%d0%b3%d0%b5%d0%bd%d0%bd%d1%8b%d1%85,%20%d1%8d%d0%bd%d0%b4%d0%be%d0%b3%d0%b5%d0%bd%d0%bd%d1%8b%d1%85%20%d0%b8%20%d1%82%d0%b5%d1%85%d0%bd%d0%be%d0%b3%d0%b5%d0%bd%d0%bd%d1%8b%d1%85%20%d1%81%d0%b8%d0%bb,%20%d0%b2%d0%bb%d0%b8%d1%8f%d1%8e%d1%82%20%d0%bd%d0%b0%20%d0%b7%d0%b4%d0%be%d1%80%d0%be%d0%b2%d1%8c%d0%b5%20%d1%87%d0%b5%d0%bb%d0%be%d0%b2%d0%b5%d0%ba%d0%b0,%20%d0%b5%d0%b3%d0%be%20%d1%85%d0%be%d0%b7%d1%8f%d0%b9%d1%81%d1%82%d0%b2%d0%b5%d0%bd%d0%bd%d1%83%d1%8e%20%d0%b4%d0%b5%d1%8f%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d0%be%d1%81%d1%82%d1%8c%20<http://geoinfoed.ru/geo3/115-osobennosti-sovremennogo-ekonomicheskogo-i-socialnogo.html>%20%d0%b8%20%d0%b2%d1%81%d0%b5%20%d0%be%d1%81%d1%82%d0%b0%d0%bb%d1%8c%d0%bd%d0%be%d0%b5%20%d0%b6%d0%b8%d0%b2%d0%be%d0%b5%20%d0%b8%20%d0%bd%d0%b5%d0%b6%d0%b8%d0%b2%d0%be%d0%b5%20%d0%bd%d0%b0%20%d0%97%d0%b5%d0%bc%d0%bb%d0%b5.%20%d0%92%d0%be%d0%b4%d0%b0,%20%d0%be%d0%b1%d0%b5%d1%81%d0%bf%d0%b5%d1%87%d0%b8%d0%b2%d0%b0%d1%8f%20%d1%81%d1%83%d1%89%d0%b5%d1%81%d1%82%d0%b2%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d0%b5%20%d0%b2%d1%81%d0%b5%d0%b3%d0%be%20%d0%b6%d0%b8%d0%b2%d0%be%d0%b3%d0%be%20%d0%bd%d0%b0%20%d0%bf%d0%bb%d0%b0%d0%bd%d0%b5%d1%82%d0%b5,%20%d0%b2%d1%85%d0%be%d0%b4%d0%b8%d1%82%20%d0%b2%20%d1%81%d0%be%d1%81%d1%82%d0%b0%d0%b2%20%d0%be%d1%81%d0%bd%d0%be%d0%b2%d0%bd%d1%8b%d1%85%20%d1%81%d1%80%d0%b5%d0%b4%d1%81%d1%82%d0%b2%20%d0%bf%d1%80%d0%be%d0%b8%d0%b7%d0%b2%d0%be%d0%b4%d1%81%d1%82%d0%b2%d0%b0%20%d0%bc%d0%b0%d1%82%d0%b5%d1%80%d0%b8%d0%b0%d0%bb%d1%8c%d0%bd%d1%8b%d1%85%20%d0%b1%d0%bb%d0%b0%d0%b3.">Водная среда - это воды суши (реки, озера, водохранилища, пруды, каналы), Мировой океан, ледники, подземные воды <http://geoinfoed.ru/ekoland/240-perenos-vlagi-v-podzemnoj-chasti-geosistemy.html>, содержащие природно-техногенные и техногенные образования. Которые, испытывая воздействие экзогенных, эндогенных и техногенных сил, влияют на здоровье человека, его хозяйственную деятельность <http://geoinfoed.ru/geo3/115-osobennosti-sovremennogo-ekonomicheskogo-i-socialnogo.html> и все остальное живое и неживое на Земле. Вода, обеспечивая существование всего живого на планете, входит в состав основных средств производства материальных благ.

  • 138. Расчет двух ректификационных установок непрерывного действия для разделения смеси этилацетат – толуол
    Курсовые работы Химия

    - уметь пользоваться средствами индивидуальной защиты, первичными средствами тушения пожаров, знать их назначение и принцип работы.

    1. Колонны ректификации горючих жидкостей оснащаются средствами контроля и автоматического регулирования: уровня и температуры жидкости в кубовой части; температуры поступающих на разделение продукта и флегмы; средствами сигнализации об опасных отклонениях значений параметров, определяющих взрывоопасность процесса, и при необходимости перепада давления между нижней и верхней частями колонны. При подаче флегмы в колонну ректификации насосом, прекращение поступления которой может привести к опасным отклонениям технологического процесса, предусматриваются меры, обеспечивающие непрерывность технологического процесса.
    2. Индивидуальные средства защиты:
  • 139. Расчет и проектирование выпарной установки непрерывного действия для выпаривания водного раствора CuSO4
    Курсовые работы Химия

    Конструкция теплообменных аппаратов выбирается на основе расчета по определению поверхности теплопередачи.До температуры кипения исходный раствор подогревается в отдельном теплообменнике за счет тепла греющего пара, что позволяет избежать увеличения поверхности. Кожухотрубчатые теплообменники относятся к числу наиболее часто применяемых, который состоит из корпуса и приваренного к нему трубных решеток. В теплообменнике одна среда движется внутри труб, а другая в межтрубном пространстве. Среды направляются противотоком друг к другу. Раствор подаётся снизу вверх, а насыщенный водяной пар в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения её плотности при нагревании. Кроме того, при указанном направлении движения сред достигается более равномерное распределение скоростей и идентичные условия теплообмена по площади поперечного сечения аппарата.

  • 140. Расчёт многокорпусной выпарной установки
    Курсовые работы Химия

     

    1. Дытнерский, Ю. И. Основные процессы и аппараты химической технологии. Пособие по проектированию [текст] / Ю. И. Дытнерский, М.: Химия, 1983, 270 с.
    2. Павлов, К. Ф. Примеры и задачи по курсу процессы и аппараты химической технологии [текст] / К. Ф. Павлов, П. Г. Романков, А. А. Носков, М.: Химия, 1970, 624 с.
    3. Справочник химика, т III, М.: Химия, 1964, 1008 с.
    4. Справочник химика, т V, М.: Химия, 1968, 976 с.
    5. Воробьёва, Г. Я. Коррозионная стойкость материалов в агрессивных средах химических производств [текст] / Г. Я. Воробьёва, М.: Химия, 1975, 816 с.
    6. Касаткин, А. Г. Основные процессы и аппараты химической технологии [текст] / А. Г. Касаткин, М.: Химия, 1973, 750 с.
    7. Викторов, М. М. Методы вычисления физико-химических величин и прикладные расчёты [текст] / М. М. Викторов, Л.: Химия, 1977, 360 с.
    8. Каталог УКРНИИХИММАШа. Выпарные аппараты вертикальные трубчатые общего назначения. М.: ЦИНТИХИМНЕФТЕМАШ, 1979, 38 с.
    9. Лащинский, А. А. Основы конструирования и расчёта химической аппаратуры [текст] / А. А. Лащинский, А. Р. Толчинский, Л.: Машиностроение, 1970, 752 с.
    10. Лащинский, А. А. Конструирование сварочных химических аппаратов [текст] / А. А. Лащинский, Л.: Машиностроение, 1981, 382 с.