Курсовой проект по предмету Химия
-
- 41.
Жидкостно-жидкостная хроматография
Курсовые работы Химия Метод основан на различном распределении веществ между двумя несмешивающимися фазами - подвижно и не подвижной. Подвижной фазой может быть жидкость или газ, неподвижной фазой твердое вещество, которое называют носителем. При движении подвижной фазы вдоль неподвижной, компоненты смеси сорбируются на неподвижной фазе. Каждый компонент сорбируется в соответствии со сродством к материалу неподвижной фазы (вследствие адсорбции или других механизмов). Поэтому неподвижную фазу называют также сорбентом. Захваченные сорбентом молекулы могут перейти в подвижную фазу и продвигаться с ней дальше, затем снова сорбироваться. Таким образом, хроматографию можно определить как процесс, основанный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Чем сильнее сродство компонента к неподвижной фазе, тем сильнее он сорбируется и дольше задерживается на сорбенте; тем медленнее его продвижение вместе с подвижной фазой. Поскольку компоненты смеси обладают разным сродством к сорбенту, при перемещении смеси вдоль сорбента произойдет разделение: одни компоненты задержаться в начале пути, другие продвинуться дальше. В хроматографическом процессе сочетаются термодинамический (установление равновесия между фазами) и кинетический (движение компонентов с разной скоростью) аспекты. В зависимости от агрегатного состояния фаз, механизма взаимодействия и оформления различают основные виды хроматографии, которые приведены в таблице:
- 41.
Жидкостно-жидкостная хроматография
-
- 42.
Зависимость нейротропных эффектов салицилатов кобальта и цинка от кальция
Курсовые работы Химия Кальциевая (Ca2+) передача сигналов объединяет мембранную возбудимость и биологическую функцию нейронов [9]. Действуя на границе между электрическими и сигнальными процессами клетки, Ca2+ каналы играют ведущую роль во многих ключевых аспектах нейронной функции. Известно, что ионы Ca2+ регулируют ионную проницаемость клеточных мембран, запускают многочисленные внутриклеточные процессы и задействованы в проведении сигналов от структур плазматической мембраны к внутриклеточным ферментам (Са2+-мессенджерная система), контролируют клеточную возбудимость, синаптическую передачу [9, 18]. Нейроны используют многочисленные способы управления внутриклеточным содержанием Ca2+, чаще всего в пределах местных сигнальных путей. Повышение концентрации Са2+ в нейроплазме происходит в основном за счёт его проникновения из внеклеточной среды через каналы плазмалеммы и высвобождения из внутриклеточного депо [33, 34]. В Ca2+ сигнализацию вовлекается большое количество Ca2+ каналов: потенциал-зависимые Ca2+ каналы плазматической мембраны, NMDA-рецепторы, AMPA-рецепторы, TRP-каналы и депо-управляемые каналы [37]. Входящий кальциевый ток передает сигналы от мембраны вглубь цитоплазмы, где Са2+ связывается с различными органическими молекулами, в том числе и со структурными элементами ионных каналов, обуславливая возбудимость клеточной мембраны [33]. Высвобождение Ca2+ из внутриклеточных депо эндоплазматического ретикулума осуществляется рецепторами инозитол-1,4,5-трисфосфата и рианодиновыми рецепторами [9]. Помпа SERCA в эндоплазматическом ретикулуме, Ca2+ помпа и Na+-Ca2+ обменник плазматической мембраны осуществляют контроль концентрации Ca2+ в цитозоле в узком диапазоне значений [40]. В формировании цитозольных Са2+ сигналов важную роль играют и митохондрии [37, 40]. Из-за чрезвычайной чувствительности нейронов к изменению внутриклеточной концентрации Ca2+ даже относительно небольшие отклонения в Ca2+ сигнализации могут привести к разрушительным последствиям [18].
- 42.
Зависимость нейротропных эффектов салицилатов кобальта и цинка от кальция
-
- 43.
Зависимость точности визуального тест-определения нитрит-иона на основе пенополиуретана от способа построения цветовой шкалы
Курсовые работы Химия - В.Ф. Волынец, М.Л. Волынец. Аналитическая химия азота. М.: Наука, 1977. 308 с.
- А.П. Крешков. Теоретические основы количественного анализа и количественный анализ. М.: Химия, 1970. 254 с.
- Д. Скуг, Д. Уэст. Основы аналитической химии, т.1. М.: Мир, 1979. 480 с.
- И.М. Кольтгоф, Е.Б. Сэндэл. Количественный анализ. М.: Химия, 1975. 823 с.
- В.Н. Алексеев. Количественный анализ. М.: Химия, 1972. 501 с.
- А.П. Крешков. Основы аналитической химии. М.: Химия, 1977. 483 с.
- У.Дж. Уильямс. Определение анионов. М.: Химия, 1982. 620 с.
- Ю.А. Золотов, В.М. Иванов, В.Г. Амелин. Химические тест-методы анализа. М.: УРСС, 2002. 304 с.
- О.А. Запорожец, О.М. Гавер, В.В. Сухан. Успехи химии. 1977, т.66, №7, с. 702 - 710.
- Braun T., Navratil I., Farad A.B. Polyurethane foam sorbents in separation science. Boca Raton: СRC Press, 1985. 220 p.
- С.Г. Дмитриенко. Пенополиуретаны в химическом анализе: сорбция различных веществ и её аналитическое применение. Автореферат диссертации на соискание учёной степени доктора химических наук. М., 2001.
- Д.Ж. Саундерс, К.К. Фриш. Химия пенополиуретанов. М.: Химия, 1968. 470 с.
- В.М. Островская. Журнал аналитической химии. 1999, т.54, №11, с. 1126-1133.
- S.G. Dmitrienko, O.A. Sviridova, L.N. Pyatkova, V.A. Zhukova, Yu.A.Zolotov. Analitica Chimica Acta. 405 (2000), р. 231 237.
- О.А. Свиридова. Пенополиуретаны новый тип полимерных хромогенных реагентов для спектроскопии диффузного отражения и тест-методов анализа. Автореферат на соискание учёной степени кандидата химических наук. М., 2002.
- Д.Джадд, Г. Вышецки. Цвет в науке и технике. М.: Мир, 1978. 592 с.
- А.А. Бугаевский, М.С. Кравченко. Журнал аналитической химии. 1983. Вып. 1, с. 17-21.
- S.G. Dmitrienko, O.A. Kozeva, V.K. Runov, Yu.A. Zolotov // Mendeleev Commun. 1991. №2. р.752.
- Химическая энциклопедия. Т.5, под ред. Н.Ф. Зефирова. М.: БРЭ, 1998.- 750 с.
- Иванов В.М., Кузнецова О.В. Химическая цветометрия: возможности метода, области применения и перспективы // Успехи химии. 2001. Т. 70, № 5. С. 411-428.
- Экспериандова Л.П., Химченко С.В. Ряд Фибоначчи в тест-анализе и граница зрительного восприятия // МОХА. 2008. Т. 3, № 1. С. 113-116.
- 43.
Зависимость точности визуального тест-определения нитрит-иона на основе пенополиуретана от способа построения цветовой шкалы
-
- 44.
Задачи по кинетике цепных, фотохимических и гетерогенных реакций при подготовке школьников к олимпиадам
Курсовые работы Химия - Дайте определение термина «фотохимия» и укажите предмет исследований.
- Объясните, в чем заключается причина протекания фотохимических реакций, часто невозможных при термическом воздействии на ту же реакционную систему?
- Приведите примеры известных фотохимических процессов.
- Сформулируйте закон Буге-Ламберта и приведите его математическую формулировку.
- В чем заключается закон Бера?
- Сформулируйте объединенный закон Буге-Ламберта-Бера и приведите его математическую формулировку.
- В чем заключается первый закон фотохимии?
- Приведите математическую формулировку закона Вант-Гоффа.
- Проанализируйте случаи, когда Фотохимическая реакция имеет первый или нулевой порядок по концентрации поглощающего свет вещества.
- Сформулируйте закон Эйнштейна-Штарка. В чем заключается его современная трактовка?
- Что называют общим квантовым выходом ф фотохимической реакции? Укажите интервал принимаемых ф значений, ответ поясните.
- Дайте определение первичного квантового выхода ???1. Может ли он принимать значения больше единицы?
- Что называют вторичным квантовым выходом ?2? Какая существует связь между ?2, ф и ?1?
- Какая величина носит название 1 Эйнштейн? Зависит ли она от природы излучения?
- Расположите в порядке возрастания энергетической активности лучи разных участков спектра: зеленые, красные, ультрафиолетовые, желтые, инфракрасные.
- в чем заключается начальная стадия поглощения света? Какова ее длительность?
- Перечислите шесть возможных направлений второй стадии первичных процессов.
- Охарактеризуйте направления, на которых происходят первичные химические процессы. Приведите примеры.
- Какое состояние молекулы называется синглетным? Укажите временной интервал жизни возбужденного синглета.
- Какие возможны другие состояния системы? Укажите временной интервал жизни возбужденного триплета.
- Перечислите процессы, которые относятся к безызлучательным. В чем заключается процесс колебательной релаксации, и какова его длительность?
- Охарактеризуйте процессы внутренней конверсии и интеркомбинационного перехода. Какова их длительность? Может ли триплетное состояние быть более реакционноспособным, чем основное синглетное? Ответ мотивируйте.
- Какой процесс называют флуоресценцией? Для каких молекул она характерна? Каков временной интервал жизни для флуоресценции?
- Какой процесс называют фосфоресценцией? Укажите временной интервал жизни для фосфоресценции.
- Поясните термин «фотосенсибилизация». Приведите примеры.
- какие реакции относят к вторичным процессам?
- Какие характеристики фотохимических реакций определяют при кинетических исследованиях флуоресценции и фосфоресценции?
- В чем заключается механизм Штерна-Фольмера? Какие первичные процессы учитываются в этом механизме?
- Какую величину называют тушением? Покажите графически, на основании схемы Штерна-Фольмера, какие величины могут быть определены при экспериментальном исследовании?
- Каким образом с помощью схемы Штерна-Фольмера, можно рассчитать первичный квантовый выход?
- Какие существуют пути возбуждения фотопроцессов?
- * Выведите уравнения для квантовых выходов флуоресценции и реакций из синглетного возбужденного состояния простейшей кинетической схемы.
- * Получите соотношения для квантовых выходов фосфоресценции и реакции из триплетного возбужденного состояния простейшей кинетической схемы.
- *Какие существуют пути для оценки эффективной энергии активации безызлучательных процессов?
- Каким образом находят энергию активации односторонней реакции из синглетного состояния?
- * Каким способом (и при каких условиях) можно оценить энтальпию реакции в возбужденном состоянии?
- Поясните термины «динамическое тушение» и «статическое тушение». Каковы критерии выбора тушителей синглетных и триплетных возбужденных состояний?
- * Получите для простейшей схемы с учетом процесса тушения синглетного возбужденного состояния уравнение Штерна-Фольмера. Какую величину называют константой тушеня?
- * Получите уравнение Штерна-Фольмера для кинетической схемы процесса фотосенсибилизации.
- Возможно ли протекание фотопроцесса, если энергия возбуждения сенсибилизатора значительно ниже энергии возбуждения реагента?
- 44.
Задачи по кинетике цепных, фотохимических и гетерогенных реакций при подготовке школьников к олимпиадам
-
- 45.
Золь-гель метод
Курсовые работы Химия На рис. 4.2 изображены спектры люминесценции и ее возбуждения Eu-содержащих ксерогеля и кварцевого гель-стекла с C(EuCl3)=3 масс %. Видно, что при возбуждении с возб=395 нм, соответствующей переходу 7F05L7 ионов Eu3+, люминесценция ксерогеля представлена рядом слаборазрешенных узких полос, наиболее интенсивная из которых соответствует переходу 5D07F2 (615 нм), и едва заметной широкой полосой при 450 нм (кривая 1). При возб=320 нм узкополосный спектр ксерогеля изменяется незначительно (по этой причине на рис. не показан), однако появляется слаборазрешенная интенсивная и широкая полоса при 380 нм (кривая 2). Спектр возбуждения люминесценции ксерогеля при рег=615 нм представлен узкими полосами, соответствующими ffпереходам ионов Eu3+, и широкой полосой при 270 нм (кривая 3). В спектре люминесценции стекла при возб=395 нм (кривая 4) наблюдается ослабление относительной интенсивности полосы 5D07F4 (700 нм) и небольшое усиление расщепления полос 5D07F1 (590 нм) и 5D07F2 (615 нм). Заметим, что с повышением Т до 298К относительная интенсивность узких люминесцентных полос практически не изменяется. Смещение возб в коротковолновую сторону слабо отражается на узкополосном спектре и сопровождается появлением гораздо менее интенсивной, по сравнению с ксерогелем, ультрафиолетовой люминесценции. Спектр возбуждения люминесценции стекла при рег=615 нм отличается от одноименного спектра ксерогеля значительно большей относительной интенсивностью полосы при 270 нм, а также приблизительно одинаковой интенсивностью полос 7F05L6 и 7F05D2 (кривая 5). Сканирование рег по полосам 5D07Fj ведет к небольшому перераспределению интенсивности в этом спектре. При уменьшении С(EuCl3) до 0,3 масс % принципиальных изменений рассмотренных спектров не происходит.
- 45.
Золь-гель метод
-
- 46.
Извлечение серной кислоты из отработанного травильного раствора
Курсовые работы Химия Технологическая схема очистки такова (рис. 2). В узел окисления (бак-мешалку) 1 подаются вентиляционные стоки и раствор окислителя (NaOCl). Далее сток подается в узел нейтрализации 2, куда добавляется при перемешивании необходимое количество раствора NaOH. В нейтрализованный сток при необходимости добавляется флокулянт (Праестол 2540), после чего происходит его осветление в полочковом вертикальном отстойнике 3. Осветленная вода доочищается на зернистом фильтре 4, после чего подается на горизонтальнотрубную выпарную установку пленочного типа. Полученный концентрат с содержанием NaCl 6080 г/дм после доочистки используется в качестве регенерационного раствора на химводоочистке ТЭС, а конденсат для финишной промывки металлоизделий в травильном агрегате. Осадок из отстойника подается в сгуститель 7, при необходимости в него добавляется флокулянт, и из сгустителя подается на механическое обезвоживание (в данном случае на вакуум-фильтр со сходящим полотном). Обезвоженный осадок высушивается и утилизируется. Таким образом, вентиляционный сток обрабатывается на локальной замкнутой системе с утилизацией всех образующихся продуктов [4]. При сернокислом травлении образуются высококонцентрированные ОТР и два вида слабо концентрированных ПВ: обычные, где концентрация Fe2+ и H2SO4 не превышает как правило 1 г/дм3, и промежуточные (при использовании ванн-ловушек, каскадной промывки и др.), где эти концентрации могут достигать величины 1015 г/дм3. Чтобы сделать сернокислотный травильно-регенерационный комплекс безотходным, необходимо решать наиболее сложную проблему в нем - обработку, кондиционирование и повторное использование ПВ и утилизацию образующихся при этом осадков. При этом большое значение имеет структура осадка: крупные и плотные частицы взвеси быстрее оседают, весь осадок занимает меньший объем и легко поддается механическому обезвоживанию. Для лучшего обезжелезивания воды и получения более плотного осадка применяется принудительное окисление железа, что и было реализовано в так называемой технологии получения магнетитового осадка. При очистке и повторном использовании ПВ травильных отделений изучено введение добавок в целях увеличения скорости осаждения и получения осадка, который лучше поддается механическому обезвоживанию. Хорошие результаты получены при использовании флокулянтов, из которых наибольшее влияние оказывает гидролизованный ПАА. Тип отстойника выбирали в процессе исследования на опытно-промышленной установке, работающей на натурных стоках. В составе установки были два горизонтальных отстойника бункерного типа, вертикальный и радиальный. Лучшие результаты получены при использовании вертикального и радиального отстойников, которые устойчиво работали даже при повышении концентрации железа в воде до 2 г/ дм3 и более. При отстаивании нейтрализованных вод образуются сильнообводненные осадки, составляющие 310%, а в отдельных случаях до 35% объема обрабатываемых сточных вод. Влажность свежевыпавшего осадка 9899,5%. По своим фильтрационным характеристикам они относятся к труднофильтруемым суспензиям; при их механическом обезвоживании образуются сильносжимаемые осадки с коэффициентом сжимаемости 0,30,7 и большим удельным сопротивлением.
- 46.
Извлечение серной кислоты из отработанного травильного раствора
-
- 47.
Извлечение сульфатного варочного раствора из отработанного варочного раствора
Курсовые работы Химия Задача, химизм и механизм варки. Задачей варки является более полное выделение целлюлозного волокна из древесной ткани в неповрежденном виде. Выделение целлюлозного волокна из древесной ткани основано на том, что лигнин, вследствие наличия в нем разнообразных реакционно-активных функциональных групп, более легко поддается разрушительному действию щелочных, кислотных и окислительных химических реагентов по сравнению с целлюлозой и гемицеллюлозами. Кроме того, характер распределения лигнина в древесной ткани способствует защите целлюлозы от реагентов до момента удаления его основной массы, после чего целлюлоза становится более доступной действию реагентов и также начинает разрушаться. По мере уменьшения содержания лигнина в клеточной стенке скорость его удаления замедляется, а скорость разрушения целлюлозы увеличивается и может достичь скорости удаления лигнина. Момент равенства наступает при достижении содержания лигнина в клеточной стенке 12 % по отношению к начальному содержанию в древесине. Очевидно, что дальнейшее продолжение варочного процесса приводит лишь к значительному разрушению целлюлозы и ухудшению ее свойств. Поэтому варку заканчивают до достижения указанного момента, обычно руководствуясь заданной жесткостью (остаточным содержанием лигнина) получаемого волокнистого полуфабриката.
- 47.
Извлечение сульфатного варочного раствора из отработанного варочного раствора
-
- 48.
Извлечение сульфит натрия из отходов процесса производства тринитротолуола
Курсовые работы Химия 2-ая стадия; (получение динитротолуола): В трёхгорлую колбу, снабжённую мешалкой, капельной воронкой и термометром заливают 220 грамм нитрующей смеси состава: H2SO4 67%, HNO3 23%, H2O 10%. и помещают на водяную баню.(Количество моногидрата HNO3, взятого на нитрацию, должно составлять 200% от теоретически необходимого). Затем постепенно сливают при работающей мешалке 100 грамм мононитротолуола. Нагревом или охлаждением водяной бани регулируют температуру содержимого реактора, таким образом чтобы температура постепенно возрастала, начиная с комнатной и заканчивая 70 80°С. (Слив мононитротолуола продолжается от 30 минут до 1 часа). После слива всего мононитротолуола постепенным нагревом водяной бани повышают температуру реакционной смеси до 100°С и делают при этой температуре выдержку в течение 30 минут. Далее охлаждают содержимое реактора до 70 80°С и медленно прибавляют 100 мл воды. Скорость прилива воды регулируют таким образом, чтобы выделившийся динитротолуол был всё время в расплавленном состоянии (температура не ниже 70°С) и, чтобы с другой стороны не имел бы место слишком сильный подъём температуры (выше 90°С). Затем реакционная смесь сливается в предварительно подогретую делительную воронку, где в течение 5 10 минут происходит отделение слоя расплавленного динитротолуола (верхняя фаза) от отработанной кислоты. Слой динитротоуола сливают в фарфоровую чашку. 3-ая стадия; (получение тринитротолуола): В трехгорлую колбу емкостью 1 литр, снабженную термометром, капельной воронкой, механической мешалкой и помещённой на водяную баню, заливается 100 грамм расплавленного динитротолуола. Затем нагревают содержимое колбы до 75°С и при этой температуре начинают медленно сливать из капельной воронки нитрующую смесь в количестве 400 грамм состава: H2SO4 83%, HNO3 17%. Во время слива кислотной смеси содержимое колбы непрерывно перемешивается и нагревом или охлаждением водяной бани обеспечивается равномерный подъём температуры от 75° С до 85°С к концу слива. Слив кислотной смеси должен продолжаться около 1 часа. Когда вся кислотная смесь слита, повышают температуру содержимого колбы до 110 115°С. (С этой целью сменяют водяную баню на заранее приготовленную нагретую до 90 100°С масляную баню). Период подъёма температуры должен продолжаться около 30 минут. После этого при температуре 110 115°С, выдерживают содержимое колбы в течение 1 часа, при непрерывной работе мешалки (3-ая стадия нитрации толуола сопровождается значительными окислительными процессами, проявляющимися в выделении окислов азота). При недостаточном соблюдении температурного режима нитрации возможны местные перегревы, которые могут повлечь за собой резкий температурный скачок. В этом случае необходимо прекратить слив нитрующей смеси и озаботиться о максимальном охлаждении реакционной массы. Не следует поднимать температуру выше 140°С). По истечении этого периода нитрация закончена. Содержимое колбы охлаждают до 80 85°С, и затем медленно при работающей мешалке приливают в реакционную колбу из капельной воронки около 100 мл воды. Время слива воды регулируют таким образом, чтобы температура содержимого колбы находилась в пределах 90 100°С. По окончании слива воды содержимое колбы переливается в предварительно подогретую делительную воронку ёмкостью в 1 литр, где в течение 3 5 минут происходит отделение слоя расплавленного тротила (верхний слой) от отработанной кислоты (нижний слой). Слой расплавленного тротила сливается в фарфоровую чашку. Выход сырого кислого тротила составляет 110 115 грамм. Температура затвердевания хорошо пронитрованного продукта не ниже 78°С. Отмывка кислого тротила от кислот: Полученный тротил содержит значительное количество кислых примесей, как минерального, так и органического характера. Для удаления последних применяют промывку тротила от кислот в расплавленном состоянии горячей водой. В автоклав ёмкостью 500 см3, снабжённый мешалкой, помещают 50 100 грамм кислого тротила и тройное по весу количество горячей воды. Расплавившийся тротил перемешивают с горячей водой в течение 5 10 минут. Затем останавливают мешалку и осторожно сливают сифоном кислую воду. Затем заливают в автоклав свежую порцию горячей воды и снова повторяют промывку по вышеописанному способу. Операцию промывки проводят несколько раз, пока промывные воды не покажут нейтральной реакции на лакмус. После этого тщательно отделяют сифоном последнюю промывную воду и расплавленный тротил сливают в тарированную фарфоровую чашку. После этого тротилу дают остыть в течение 1 часа до комнатной температуры, сливают находящуюся на поверхности воду и помещают в сушильный шкаф, в котором сушат при 110°С в течение 6-ти часов. После этого высушенный тротил остужают в эксикаторе над CaCl2 до комнатной температуры. Сульфитная очистка тротила: Сухой неочищенный тротил тонко измельчается в фарфоровой ступке. 50 грамм измельчённого тротила помешается в автоклав емкостью 500 см3, снабжённый механической мешалкой и термометром. Туда же заливается 100 мл свежеприготовленного водного раствора сульфида натрия, при этом раствор принимает красную окраску. Затем нагревом водяной бани доводят содержимое до 40° 50°С, при этой температуре перемешивают в течение 1 часа, после чего переносят содержимое колбы на воронку Бюхнера, где тротил тщательно отжимают от промывных вод и промывают теплой (40° 50°С) водой до полного обесцвечивания промывных вод. После этого очищенный тротил пересыпается в фарфоровую чашку, в которой сушиться при 110°С в течение 6-ти часов. Выход очищенного продукта 45 47 грамм. Перекристаллизация из спирта: В колбу, соединённую обратным холодильником и помещённую на водяную баню, помещают 50 грамм сырого тротила и 250 300 мл 96%-ного спирта. Нагревом водяной бани доводят спирт до кипения, при этом тротил растворяется в спирте. После этого полученный раствор (окрашенный в красный цвет) фильтруют, и дают остужаться до следующего дня. После этого выделившиеся кристаллы отфильтровывают на воронке Бюхнера и промывают небольшим количеством чистого спирта. Отжатые от спирта кристаллы сушат при 40 50°С. Выход кристаллического продукта 42 44 грамма.
- 48.
Извлечение сульфит натрия из отходов процесса производства тринитротолуола
-
- 49.
Извлечение сурьмы в процессе производства полиэфирных смол
Курсовые работы Химия Процесс состоит из следующих стадий:
- Предварительная обработка кубового остатка определенным количеством воды с последующим щелочным гидролизом при температуре 85100 °С для расщепления полимера с низкой молекулярной массой и получения соли терефталевой кислоты и этиленгликоля (общее название для смеси моно-, ди-, и триэтиленгликоля).
- Обработка смеси, образовавшейся на стадии 1, кислотой до значений рН = 6,26,5 с выпадением из раствора сурьмы (или соединения сурьмы), которые отделяются и используются в установках по производству сурьмы.
- Фильтрат после стадии 2 подвергается операции осветления, например активированным углем.
- Фильтрат после стадии 3, нагретый до ~76 "С, подкисляется до значений рН = 1-3 для осаждения терефталевой кислоты, которая отфильтровывается, промывается и сушится. Она имеет достаточную чистоту и может использоваться как товарный продукт, или возвращаться в цикл производства полиэтилентерефталата.
- К фильтрату после стадии 4 при температуре 76100 °С добавляются материалы типа тиосульфата натрия для перевода сурьмы или ее соединений в сульфид сурьмы.
- Смесь подвергается фильтрованию для отделения выпавшего сульфида сурьмы; фильтрат содержит в основном этиленгликоль, воду, сульфит натрия, и вероятно, бисульфат натрия.
- 49.
Извлечение сурьмы в процессе производства полиэфирных смол
-
- 50.
Извлечение тиоционата натрия из отработанных растворов для прядения акрилового волокна
Курсовые работы Химия - Геллер Б.Э. Состояние и перспективы развития производства полиакрилонитрильных волокон / Б.Э.Геллер // Химические волокна. - 2002. - №3. - С.3-10.
- Роговин З.А. Основы химии и технологии химических волокон / З.А. Роговин / З.А.Роговин. - М.: Химия, 1974. - Т.2. - 344 с.
- Карбоцепные синтетические волокна / под ред. К.Е.Перепелкина. - М.: Химия, 1973. - 589 с.
- Устинова Т.П. ПАН-волокна: технология, свойства, применение / Т.П. Устинова, Н.Л.Зайцева. Саратов: СГТУ, 2002. 40 с.
- Юркевич В.В. Технология производств химических волокон / В.В. Юркевич, А.Б. Пакшвер. - М.: Химия, 1987. - 304 с.
- Геллер Б.Э. Влияние кислотности реакционной среды на процесс гомофазной сополимеризации акрилонитрила, метакрилата и 2-акриламид-2-метилпропансульфоновой кислоты / Б.Э. Геллер, Л.А. Щербинина, О.Н.Короткая // Химические волокна. - 2000. - №2. - С.23-26.
- Артеменко С.Е. Изменение свойств полиакрилонитрильных волокон при замене итаконовой кислоты в сополимере на акриловую кислоту / С.Е. Артеменко, Л.Г. Панова, Н.М. Савельева // Химические волокна. 1996. - №5. С.42-43.
- Мухамеджанова М.Ю. Структурные, физико-механические и сорбционные свойства волокон из тройных сополимеров акрилонитрила / М.Ю.Мухамеджанова, Н.Ю. Ширшова, Г.В. Никонович // Химические волокна. 2000. - №3. С.19-22.
- Ширшова Н.Ю. Синтех волокнообразующих сополимеров на основе акрилонитрила, метилакрилата и N-винилкапролактама / Н.Ю. Ширшова, М.Ю.Мухамеджанова, Г. Хамракулова // Химические волокна. 2001. - №1. С.3-6.
- Мухамеджанова М.Ю. Реологические свойства концентрированных растворов тройного сополимера акрилонитрила / М.Ю.Мухамеджанова, Н.Ю. Ширшова, Г. Хамракулова // Химические волокна. 2000. - №5. С.3-6.
- Ассоциация макромолекул полиакрилонитрила / Л.В.Дубровина, Л.М.Бронштейн, Т.П.Брагина, П.М.Валецкий // Высокомолекулярные соединения. Т.40, №3. С.472-477.
- Иовлева М.М. К вопросу о растворимости полиакрилонитрила / М.М. Иовлева, В.Н. Смирнов, Г.А. Будницкий // Химические волокна. 2001. - №4. С.16-18.
- Иовлева М.М. Фазовые диаграммы волокнообразующих полимеров / М.М.Иовлева // Химические волокна. 2000. - №4. С.20-25.
- 50.
Извлечение тиоционата натрия из отработанных растворов для прядения акрилового волокна
-
- 51.
Изотермы адсорбции паров летучих органических веществ на пористых углеродных материалах
Курсовые работы Химия - Кузнецов, Б.Н. Синтез и применение углеродных сорбентов / Б.Н.Кузнецов, М.Л. Щипко, В.Е. Тарабанько // Соросовский образовательный журнал, 1999. №12. С. 2934.
- Тайц, Е.М. Окускованное топливо и адсорбенты на основе бурых углей / Е.М. Тайц, И.А. Андреева, Л.И.Антонова. М.: Недра, 1985. 160 с.
- Фенелонов, В.Б. Пористый углерод / В.Б. Фенелонов. Новосибирск.: Химия, 1995. 513 с.
- Рощина, Т.М. Адсорбционные явления и поверхность / Т.М. Рощина, В.П.Передовой, Ф.Л. Ковш // Соросовский образовательный журнал. 1998. №2. С. 8994.
- Серпионова, Е.Н. Промышленная адсорбция газов и паров / Е.Н. Серпионова. М.: Высшая школа, 1969. 416 с.
- Грег, С. Адсорбция, удельная поверхность, пористость / С. Грег, К. Синг. М.: Мир, 1984. 306 с.
- Никитина, Ю.С. Экспериментальные методы в адсорбции и молекулярной хроматографии / Ю.С.Никитина. М.: МГУ, 1990. 318 с.
- Кузнецов, Б.Н. Новые подходы в переработке твердого органического сырья / Б.Н. Кузнецов, М.Л. Щипко, С.А. Кузнецова // Журнал органической химии. 1991. Т.36.№3. С.171186.
- Кинхле, Х. Активные угли и их промышленное применение / Х. Кинхле, Э. Бадер . Л.: Химия, 1984. 216 с.
- 51.
Изотермы адсорбции паров летучих органических веществ на пористых углеродных материалах
-
- 52.
Изучение равновесия между таутомерными формами молекулы нитрогуанидина с помощью квантово-химических расчетов
Курсовые работы Химия Более ранние полуэмпирические методы CNDO, INDO и NDDO были разработаны Дж. Поплом и его группой в то время, когда вычислительные машины могли выполнять неэмпирические расчеты лишь для самых простых молекул. Эти методы ориентированы на корректное воспроизведение электронных характеристик, таких, как дипольный момент, а не теплот образования и геометрических параметров молекул. В наиболее простом из них, методе CNDO (Complete Neglect of Differential Overlap), при расчете интегралов электрон-электронного отталкивания атомные орбитали рассматриваются как сферически симметричные. Ориентация р-орбиталей учитывается только в одноэлектронных резонансных интегралах, величина которых зависит также от размеров орбиталей, расстояний между центрами и значений констант, определяющих тип связи. В более сложном приближении INDO (Intermediate Neglect of Differential Overlap) проводится расчет одноцентровых интегралов отталкивания между атомными орбиталями для одного и того же атома. Впервые ориентация р-орбиталей при расчете интегралов отталкивания учитывалась в следующем по сложности приближении - NDDO (Neglect of Diatomic Differential Overlap). В этом методе учитывались трех- и четырехцентровые интегралы, которые ответственны за перекрывание атомных орбиталей одного и того же атома.
- 52.
Изучение равновесия между таутомерными формами молекулы нитрогуанидина с помощью квантово-химических расчетов
-
- 53.
Изучение растворимости бензоата свинца в различных растворителях
Курсовые работы Химия Бензойная (или росноладанная), Acidum benzoicum sublimatum, Flores Benzoës весьма распространенное в природе вещество состава С7Н6О2, или С6Н5СООН; содержится в некоторых смолах, бальзамах, в травянистых частях и в корнях многих растений (согласно прежним, до сих пор не проверенным наблюдениям), а также в цветах Unona odoratissima (в эссенции алан-жилан, или иланг-иланг), в бобровой струе, а главным образом в бензойной смоле, или росном ладане, откуда и ее название. О продуктах сухой перегонки этой смолы есть указания еще в сочинениях, относящихся к XVI ст.; Blaise de Vigenère в своем трактате (1608 г.) "Traité du feu et du sel" первый упоминает о кристаллическом веществе из бензойной смолы, которое впоследствии было исследовано ближе и получило название Flores benzoës. Состав его окончательно установлен Либихом в 1832 г., а Кольбе предложил рассматривать его как фенилкарбоновую кислоту. Бензойная кислота может быть получена из бензола синтетически и образуется при многих реакциях, совершающихся с телами ароматического ряда. Для технических целей как исходный материал берут гиппуровую кислоту, содержащуюся в моче травоядных. Мочу быстро выпаривают до ? первоначального объема, фильтруют и обрабатывают избытком соляной кислоты, причем гиппуровая кислота выделяется в кристаллическом виде. По прошествии суток кристаллы отделяют от маточного раствора и очищают повторной кристаллизацией, пока почти вовсе не исчезнет упорно удерживающийся запах мочи. Очищенную гиппуровую кислоту кипятят с соляной кислотой, причем происходит расщепление на бензойную кислоту и гликокол:
- 53.
Изучение растворимости бензоата свинца в различных растворителях
-
- 54.
ИК-спектральное проявление водородных связей
Курсовые работы Химия Растворитель?, см-1Оптическая плотность в областях спектра ИК поглощенияОН (своб.)ОН… ? связьОН (внутримол.)ОН (межмол.)Четырёххлористый углерод (CCl4)3631, 3508, 34400.32-0.690.31Хлороформ (CHCl3)3622, 3508, 34380.46-0.330.38Хлористый метилен (СН2 Cl2)3620, 3508, 34350.60-0.420.54Бензол (C6H6)3612, 3573, 3504, 34270.390.260.590.44Толуол (C7H8)3612, 3573, 3504, 34370.350.290.580.40Кумол (C9H12)3610, 3573, 3504, 34370.310.270.630.39Из рисунка видно, что при растворении БФ в четыреххлористом углероде(а) присутствуют ОН-группы в свободном состоянии(3631 см-1), также видно, что преобладает цис-форма БФ(3508 см-1), то есть образуется внутримолекулярная водородная связь, но есть и небольшая доля транс-БФ(3440 см-1), то есть образуется межмолекулярная водородная связь. Из фрагмента спектра хлороформа (б) видно, что БФ со свободными ОН-группами уже меньше(3622 см-1), а соотношение цис- и транс-БФ примерно 1:1, то есть в хлороформе в равной степени идет образование как внутримолекулярной, так и межмолекулярной водородной связи(3508 см-1 и 3438 см-1 соответственно). В растворе бензола (в) свободные ОН-группы практически отсутствуют, появляется небольшой пик с частотой 3573 см-1 , это говорит о взаимодействии БФ с ?-системой бензола и здесь вновь преобладает цис-БФ(внутримолекулярная водородная связь) и в меньшем количестве транс-БФ(межмолекулярная водородная связь). Из таблицы 2 также видно, что при растворении БФ в толуоле и кумоле также преимущественно образуется цис-БФ, в меньшей степени транс-БФ, практически отсутствуют свободные ОН-группы.
- 54.
ИК-спектральное проявление водородных связей
-
- 55.
Интерполиэлектролитные комплексы
Курсовые работы Химия Но это далеко не все то, что может делать поливинилпирролидон. Он встречается в клее, которым склеена многослойная фанера. Но если вы хотите услышать что-нибудь более замечательное, я могу сказать вам, что этот полимер может на самом деле спасать жизнь. Кто-то когда-то в первой половине двадцатого века сообразил, что пациенту, который потерял много крови, можно делать переливание кровяной плазмы, и эта плазма продлит жизнь пациенту, пока не появится возможность перелить ему цельную кровь. Но иногда было трудно найти даже плазму крови, и пришлось придумать, как растянуть запас плазмы подольше. Одним из таких мест является поле боя. Водно-солевой раствор, содержащий 6 % низкомолекулярного поливинилпирролидона (относительная молекулярная масса 12 600+2700) и ионы натрия, калия, кальция, магния, хлора, или гемодез, используется в качестве заменителя плазмы крови. Поливинилпирролидон (ПВПД) хорошо растворим в воде. Гемодез - прозрачная жидкость желтого цвета; относительная вязкость 1, 5 - 2, 1; рН 5, 2 - 7, 0. Применяют для дезинтоксикации организма при токсических формах острых желудочно-кишечных заболеваний (дизентерия, диспепсия, сальмонелезы и др.), ожоговой болезни в фазе интоксикации, послеоперационной интоксикации, инфекционных заболеваниях, токсикозах беременных и других патологических процессах, сопровождающихся интоксикацией. Препараты, аналогичные гемодезу, выпускаются за рубежом под названиями: Neocompensan, Реristan Н и др. Механизм действия гемодеза обусловлен способностью низкомолекулярного поливинилпирролидона связывать токсины, циркулирующие в крови, и быстро выводить их из организма. Препарат быстро выводится почками (до 80 % за 4 ч) и частично через кишечник. Он усиливает почечный кровоток, повышает клубочковую фильтрацию и увеличивает диурез. При острых желудочно-кишечных заболеваниях и интоксикациях обычно достаточно 1 - 2 вливаний. При ожоговой болезни в фазе интоксикации (1 - 5-й день болезни) и в фазе интоксикации острой лучевой болезни производят 1 - 2 вливания, при гемолитической болезни и токсемии новорожденных - от 2 до 8 вливаний (ежедневно или 2 раза в день). Гемодез может дать хороший дезинтоксикационный эффект при сепсисе, но в связи с возможным понижением артериального давления, необходимо тщательное наблюдение за состоянием больного. При медленном введении гемодез обычно осложнений не вызывает. Введение с повышенной скоростью может вызвать понижение артериального давления, тахикардию, затруднение дыхания и потребовать введения сосудосуживающих и сердечных средств, кальция хлорида. Во время второй мировой войны и Корейской войны плазму крови разбавляли поливинилпирролидоном, чтобы большему количеству раненых можно было помочь, имея ограниченный запас кровяной плазмы.
- 55.
Интерполиэлектролитные комплексы
-
- 56.
Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов
Курсовые работы Химия - Френкель С. Я. Полимеры, проблемы, перспективы, прогнозы. //В кн. Физика сегодня и завтра. Л. 1973. С. 179.
- Волькенштейн М. В. Молекулярная биофизика. М. Наука. 1975. 616с.
- Bekturov E. A., Bimendina L. A. //J. Macromol. Sci. Rev. Macromol. Chem.Phys. 1997.C37(3).P.501.
- Зезин А.Б., Кабанов В. А. //Успехи химии. 1982. Т. 56. С. 1447.
- Бектуров В.А., Бимендина Л.А. Интерполимерные комплексы. Алма-Ата. Наука 1977. 264с.
- Бектуров Е.А., Бимендина Л А., Кудайбергенов С.Е. Полимерные комплексы и катализаторы. Алма-Ата. Наука. 1982. 192 с.
- Бектуров Е. А., Кудайбергенов С. Е., Хамзамулина Р. Э. Катионные полимеры. Алма-Ата. Наука. 1986. 159с.
- Бектуров Е.А., и др. Молекулярные комплексы полимеров. Алма-Ата. Наука. 1988. 174с.
- Паписов И. М. //Высокомолек. ссоед. 1997. Т. Б39. С. 562.
- Бимендина Л. А., Бектуров Е. А., Самоорганизация молекул в растворах и на границе раздела фаз. //В. Кн. «Неравновесность и неустойчивость в эволюции динамических структур в природе » Алматы. ?ылым. 1998. С. 157.
- Бектуров Е. А., Кудайбергенов С. Е. Катализ полимерами. Алма-Ата. Наука. КазССР. 1988. 184с.
- Кабанов Н. М. и др. //Высокомолек. соед. 1979. Т. А21. С.209.
- Бектуров Е. А., Бимендина Л. А., Мамытбеков Г. К.//Комплексы водорастворимых полимеров и гидрогелей.
- Бимендина Л.А., Яшкарова М.Г., Кудайбергенов С.Е., Бектуров Е.А. Полимерные комплексы (получение, свойства, применение): Монография / под редакцией Жубанова Б.А. Семипалатинский государственный университет имени Шакарима Семипалатинск, 2003. 313 с.
- 56.
Исследование комплексообразования ПКЭАК с ионами двухвалентных металлов
-
- 57.
Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином
Курсовые работы Химия Следовые количества ванадая (1У) и ванадия(У) в воде определяют методом атомно-эмиссионной спектроскопии после концентрирования и разделения на колонках, заполненных силикагелем с иммобилизованными на нем фторированными /2-дикетонами бензоилтрифторацетоном, теноилтриф-торацетоном. Для определения суммарного содержания ванадия (V) и ванадия (IV) пробу пропускали через колонку [43], заполненную 1.5 г модифицированного силикагеля, со скоростью 10 мл мин"1 вместе с ацетатнымии буферным раствором (рН 6). Для элюирования использовали 6 М соляную кислоту, а внутренним стандартом служил (1-10)10"6М раствор кобальта(П). Раздельное определение ванадия и ванадия (IV) основано на их неодинаковой сорбции при различных рН. Для сорбции V(V) раствор с рН 3 пропускали через колонку с модифицированным силикагелем, а для извлечения V(IV) прошедший через колонку раствор нейтрализовали до рН 6 и пропускали через вторую колонку с тем же сорбентом. Предел обнаружения ванадия составляет 0.06 мкг л"1. Ионы железа(Ш), меди(П) и других металлов в больших концентрациях маскируют комплексоном III. Методика была использована для 1-2 мкг л"1 ванадия в речной воде. Показана возможность применения силикагеля, модифицированного реагентами с этилендиаминовой и этилендиаминтриацетатной функциональными группами, для разделения и концентрирования ванадия (V) и ва-надия(ГУ) [54]. Разделение проводят на двух колонках, заполненных модифицированным силикагелем. В первой колонке находится силикагель, модифицированный соединением с этилендиаминовой функциональной группой, во второй соединением с этилендиаминтриацетатной группой. При рН 2,5-3,0 в первой колонке сорбируется только ванадий (V). При использовании метода атомно-абсорбционной спектроскопии с индукционно связанной плазмой предел обнаружения ванадия составляет 60 пг мл"1.
- 57.
Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином
-
- 58.
Исследование распределения и накопления трихлоруксусной кислоты в модельных системах и природных водах
Курсовые работы Химия - Химические основы экологического мониторинга / В.В. Кузнецов.// Соросовский образовательный журнал.-1999.-№1.-С.35-40.
- Мониторинг качества питьевой воды/А.А Мильнер, Г.Д. Резников. //Химия и технология воды-1996, т.18, №1, с. 83-87.
- Формирование и контроль качества поверхностных вод. Вып. 3 Охрана вод от воздействия удобрений и ядохимикатов, 1976г. с.139
- Врочинский К.К. Пути поступления и содержание пестицидов в воде водоисточников/Гидробиологический журнал, 1976, т.12, №5, с.93-101.
- Брагинский Л.П. Персистентные пестициды в экологии пресных вод./А.П. Брагинский, Ф.Я. Комаровский, Л.И. Мережковский, Киев:1979г-141с.
- Скурлатов Ю.И. Дука Г.Г. Химия и жизнь воды.- Кишенёв:1989-124с.
- Экология города./Под ред. Стольберга Ф.В.,Киев: 2000г.-320с.
- Лейте Вольфганг. Определение органических загрязнителей питьевых природных и сточных вод. М., Химия, 1981г.с.157-169.
- Методы анализа пестицидов./Ю.С. Ляшков, Москва: 1972г.-159с.
- Сиренко Л.А., Гавриленко М.Я. "Цветение" воды и евтрофирование. Киев: Наукова думка. 1978г.-231c.
- Исследование биологического действия антропогенных факторов, загрязняющих водоемы/О.М. Кожова, Иркутск:ИГУ,1979-184с.
- Роль микроелементов в жизни водоёмов ( сборник статей )/АН СССР, Всесоюзное гидробиологическое общество, (отв. Ред. Воробьёв) М:Наука, 1980г.-143с.
- Лурье Ю. Ю., Рыбников А. И. Химический анализ производственных сточных вод. М., Химия,1974 г.-273с.
- 58.
Исследование распределения и накопления трихлоруксусной кислоты в модельных системах и природных водах
-
- 59.
Каталитический риформинг
Курсовые работы Химия При увеличении единичной мощности установки сокращаются удельные, т. е. рассчитываемые на 1 т перерабатываемого сырья, затраты на строительство установок, эксплуатационные расходы, производственный штат. Например, благодаря увеличению мощности установок первичной перегонки нефти от 3 до 6 млн. т/год капитальные вложения на единицу мощности уменьшаются на 31 %, а производительность труда повышается в 22,5 раза. Укрупнение установок позволяет перейти к более прогрессивным видам оборудования, например от поршневых компрессоров к центробежным. Другая особенность современной нефтепереработки создание установок, в составе которых объединяется (комбинируется) несколько технологических процессов. Внедрение таких установок, называемых комбинированными, сокращает общую сумму капиталовложений, позволяет уменьшить площадь территории установки и всего завода. Значительно сокращается протяженность трубопроводов, уменьшаются тепловые потери вследствие того, что теплота горячих потоков одного технологического процесса используется для подогрева холодных потоков другого процесса. Первые комбинированные установки появились в середине 1950-х гг. Сначала в составе таких установок комбинировалось 23 процесса. Были, например, построены комбинированные установки электрообессоливания, первичной перегонки нефти и вторичной перегонки бензина. Процесс каталитического риформинга на платиновом катализаторе комбинировался с предварительной гидроочисткой бензина и экстракцией аренов из катализата, В дальнейшем комбинирование процессов углублялось, в состав установок стали включать 45 процессов. На нескольких отечественных НПЗ в 19751984 гг. были введены в эксплуатацию комбинированные установки по неглубокой - переработке нефти ЛК-6У. Установки ЛК-6У состоят из пяти секций:
- 59.
Каталитический риформинг
-
- 60.
Качественное и количественное определение ионов хрома (III)
Курсовые работы Химия Задачи аналитической химии можно сформулировать следующим образом:
- Развитие теории химических и физико-химических методов анализа, научное обоснование, разработка и совершенствование приёмов и методов исследования, в том числе автоматических.
- Разработка методов разделения веществ и методы концентрирования микропримесей.
- Совершенствование и разработка методов анализа природных веществ, окружающей среды и технических материалов и т. д.
- Обеспечение химико-аналитического контроля в процессе проведения разнообразных научно-исследовательских работ в области химии и смежных областей науки, промышленности и техники.
- Поддержание химико-технологических и физико-химических процессов производства на заданном оптимальном уровне на основе систематического химико-аналитического контроля всех звеньев промышленного производства.
- Создание методов автоматического контроля технологических процессов, сочетающихся с системами управления на основе использования электронных вычислительных, регистрирующих, сигнализирующих, блокирующих и управляющих машин, приборов и аппаратов.
- 60.
Качественное и количественное определение ионов хрома (III)