Физика
-
- 2741.
Трехфазные цепи переменного тока
Курсовой проект пополнение в коллекции 03.09.2012
- 2741.
Трехфазные цепи переменного тока
-
- 2742.
Трехфазные электрические цепи, электрические машины, измерения электрической энергии, электрического освещения, выпрямления переменного тока
Методическое пособие пополнение в коллекции 14.05.2010 При подаче напряжения на лампу (рис.2) начальный ток потечет по следующей цепи: клемма сети, дроссель, первичный электрод лампы, стартер, второй электрод лампы, клемма сети. Величина этого тока незначительная и составляет доли ампера. Этот ток, проходя через газ между электродами стартера, нагревает этот газовый промежуток (т.к сопротивление этого газового слоя довольно велико). Вместе с газом нагреваются и электроды стартера. Биметаллический электрод при нагревании изгибается и соединяется со вторым электродом. При замыкании контактов стартера ток в цепи резко увеличивается, т.к исключается сопротивление газового промежутка стартера. Величина этого тока, в основном, определяется индуктивным сопротивлением дросселя. Ток, который течет по цепи при замкнутых контактах стартера называется пусковым током. Пусковой ток разогревает электроды люминесцентной лампы до температуры около 1000°К. Лампа готова к зажиганию. Так как электрическое сопротивление замкнутых электродов стартера мало, они охлаждаются (Q=I2R) и размыкаются (биметаллический электрод возвращается в начальное положение). При размыкании контактов стартера ток в цепи резко уменьшается, такое резкое уменьшение тока вызывает быстрое уменьшение магнитного поля дросселя, что в свою очередь приводит к возникновению ЭДС самоиндукции, импульс которой достигает 500...600 В. Это напряжение, накладываясь на напряжение сети, пробивает газовый промежуток в лампе, и начинается электрический разряд в газе, а затем и в парах ртути. Невидимое для глаза ультрафиолетовое излучение, возникающее в результате этого разряда, облучает слой люминофора и вызывает видимое свечение его.
- 2742.
Трехфазные электрические цепи, электрические машины, измерения электрической энергии, электрического освещения, выпрямления переменного тока
-
- 2743.
Трехфазные электротехнические устройства
Курсовой проект пополнение в коллекции 18.12.2010 Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).
- 2743.
Трехфазные электротехнические устройства
-
- 2744.
Три начала термодинамики
Информация пополнение в коллекции 09.12.2008 Исторически второе начало термодинамики было сформулировано гораздо раньше первого начала, но со временем оно получало все новое и новое толкование, а его формулировки становились все более строгими. Впервые основное положение второго начала было дано М. В. Ломоносовым (1747 г.). В работе «Размышления о причинах теплоты и стужи» Ломоносов говорит: «Если более теплое тело А приходит в соприкосновение с другим телом Б, менее теплым, то находящиеся в точке соприкосновения частички тела А быстрее вращаются, чем соседние с ним частички тела Б. От более быстрого вращения частички тела А ускоряют вращательное движение частичек тела Б, т. е. передают им часть своего движения; сколько движения уходит от первых, столько же прибавляется ко вторым. Поэтому когда частички тела А ускоряют вращательное движение частичек тела Б, то замедляют свое собственное. Отсюда когда тело А при соприкосновении нагревает тело Б, то само оно охлаждается»… и далее, «Тело А при действии на тело Б не может придать последнему большую скорость движения, какую имеет само. Если тело Б холодное и погружено в теплое газообразное тело А, то тепловое движение частичек тела А приведет в тепловое движение частички тела Б, но в частичках тела Б не может возбудить более быстрое движение, чем какое имеется в частичках тела А. поэтому холодное тело Б, погруженное в тело А, не может воспринять большую степень теплоты, чем какую имеет тело А».
- 2744.
Три начала термодинамики
-
- 2745.
Трибология лыжных гонок
Реферат пополнение в коллекции 30.09.2010
- 2745.
Трибология лыжных гонок
-
- 2746.
Труды Георга Рихмана о распределении теплоты
Информация пополнение в коллекции 06.05.2010 Большое значение для развития учения о теплоте имели работы ученого по исследованию самопроизвольного процесса переноса тепла из более нагретой среды к менее нагретой путем конвекции и теплопроводности. В первой серии опытов Рихман исследовал закономерность охлаждения воды, заключенной в стеклянный сосуд, который подвешивался на тонком шнуре и соприкасался только с воздухом, имеющим постоянную температуру. В других сериях он изучал влияние на теплообмен величины и формы поверхности охлаждаемой жидкости, а также ее объема. Охлаждение жидкости исследовалось как в стационарных условиях, так и при тепловом потоке, изменяющемся во времени. Ученый заметил, что в сухом неподвижном воздухе охлаждение жидкости происходит иначе, чем во влажном. Анализируя проведенные опыты, Рихман пришел к выводу о том, что теплообмен между телами является сложным физическим процессом, который зависит от температуры тел, поверхности нагрева или охлаждения, объема, а также от способности тел удерживать в себе теплоту. Подводя итоги своим экспериментам, он сделал вывод, что падение температуры нагретого тела на Dt при свободном его охлаждении в воздухе прямо пропорционально поверхности этого тела F, разности температур тела и среды (t t1), времени Dt и обратно пропорционально объему тела V:
- 2746.
Труды Георга Рихмана о распределении теплоты
-
- 2747.
Трьох- і чотирьох хвильове розсіяння світла на поляритонах в кристалах ніобіту літію з домішками
Курсовой проект пополнение в коллекции 15.10.2009 У більшості виконаних раніше робіт використовувалася традиційна схема КАРС-СПЕКТРОСЬКОПІЇ, в якій одне з накачувань є двічі виродженим з погляду процесу чотирьох хвилевого зміщення, і реєстрація сигналу ведеться на антистоксовій частоті. В даному випадку використовувався найбільш загальний варіант чотирьох хвилевої взаємодії, в якій всі хвилі мають різні частоти і реєструється стоксова компоненту розсіяного випромінювання. Схема експериментальної установки приведена на рис.16. Джерелами хвиль збудливого випромінювання з частотами 1 і 2 служать YAG: Nd+3-лазер і перебудований лазер на кристалі що мають довжини хвиль генерації 1=1,064 мкм і 2 в інтервалі 1,08-1,22 мкм відповідно і повторення 1-33 Гц, що працюють з частотою. Накачуванням для перебудованого лазера на кристалі з центрами забарвлення служить випромінювання основної гармоніки YAG:Nd+3-лазера, що пройшло через YAG:Nd+3-усилитель і поляризаційну призму Глана-Томсона Пг1. Як зондуюча хвиля використовується випромінювання другої гармоніки YAG:Nd+3-лазера (довжина хвилі L=532 нм), частоти ГВГ, що генерується подвоювачем, яке відділяється від випромінювання основної гармоніки за допомогою дзеркала з селективним по частоті коефіцієнтом віддзеркалення. Завдяки використанню джерел ближнього ГИК діапазону для збудження поляритонної хвилі, паразитні засвічення, викликані люмінесценцією досліджуваного середовища під дією їх випромінювання, потрапляють в ГИК діапазон, далекий від області реєстрації сигналу, лежачої у видимій частині спектру. Необхідна поляризація променів, падаючих на кристал, визначається поляризаційними призмами Глана-Томсона Пг1 і Пг2. Кути падіння променів накачування на досліджуваний кристал задаються системою дзеркал З2-з4. Крім того, введення в промені накачувань додаткових фокусуючих лінз Л1-л3 дозволяє варіювати значення щільності потужності накачувань в області їх взаємодії і їх кутову расходимість. Розсіяне випромінювання збирається трьохлінзовою системою ЛС в площині вхідної щілини спектрографа СП, пройшовши заздалегідь через поляризаційну призму Глана-Томсона Пг3, службовку аналізатором розсіяного випромінювання і що відсікає що пройшло через зразок Об випромінювання пробної хвилі.
- 2747.
Трьох- і чотирьох хвильове розсіяння світла на поляритонах в кристалах ніобіту літію з домішками
-
- 2748.
Тунельные и барьерные эффекты
Реферат пополнение в коллекции 09.12.2008 Рассмотрим вид потенциальной кривой на оси OZ(x = y = 0, r = | z |). В отсутствие внешнего поля (? = 0) U' = U (r) и имеет вид, изображенный на рис. 6.1 пунктиром. Дополнительная потенциальная энергия во внешнем поле е?z изобразится пунктирной прямой аа'. Кривая полной потенциальной энергии U, получающаяся сложением, проведена на рис. 6.1 сплошной линией а'b' и ab. Мы видим, что около точки z0 образуется потенциальный барьер, разделяющий пространство на две области: внутреннюю z > z0 и внешнюю z < z0, в каждой из которых потенциальная энергия U' меньше U' (z0) = Um. На рис. 6.1 приведены также два уровня энергии Е` и Е". Если энергия Е = Е" > Um, то электрон не будет удерживаться вблизи атома, а будет удаляться в область отрицательных z. Если же энергия электрона Е = Е' < Um, то, согласно законам классической механики, электрон останется во внутренней области. По квантовой механике в этом случае просачивание через барьер все же будет иметь, место. Таким образом, здесь создается положение вещей, вполне аналогичное тому, которое имеет место при радиоактивном распаде.
- 2748.
Тунельные и барьерные эффекты
-
- 2749.
Туннельная интерференция полей волн произвольной физической природы и перспективы ее применения
Информация пополнение в коллекции 09.12.2008 Из теории приемной антенны (длинноволновое приближение) известно, что мощность, поступающая в цепь антенны, в точности равна мощности интерференционного потока , обусловленного интерференцией полей падающей на антенну волны и полей , рассеиваемых излучателем при приеме. Таким образом, поступающую в антенну электромагнитную энергию, то есть , в точке приема можно повысить лишь амплитудой рассеиваемых антенной полей посредством увеличения коэффициента поляризации излучателя. Следовательно, на пассивную антенну повышение потока практически невозможно, однако на активно лучащую антенну аналогичный поток можно сделать весьма большим (на порядки) за счет встречной когерентной “подсветки” ближней зоны на частоте несущей сигнала [5, 6]. При этом эффективность такого приема повышается с понижением частоты, что весьма актуально для решения проблемы энергетики радиосвязи на длинных волнах. Как видим, и здесь используется все та же туннельная интерференция электромагнитных полей.
- 2749.
Туннельная интерференция полей волн произвольной физической природы и перспективы ее применения
-
- 2750.
Турбина ТВаД мощностью 10000 кВт
Дипломная работа пополнение в коллекции 18.03.2012 №Элементарная пов-ть детали. Технологический маршрут ее обработкиЭлементы припуска, мкм.Расчетный припуск, мкмДопуск размера Т, ммРасчетный припуск 2Zном.р мм.Расчетный размер D, мм.Принятые размеры, мм.Принятые припуски, мм.Операционные размеры, мм.RzhDe2Zmin.pT2Zном.рDp.Dmax.Dmin.2Zmax2ZminПоверхность 2 [Æ 110 h12 ]5Штамповка160200538.5--+1 -0.5-113.908115113.5--15Точение черновое8015032.32001868-0.872.368111.54111.6110.733.271.9111.6-0.8735Точение получистовое203027100670-0.351.54110110109.651.950.73110-0.35Поверхность 16 [Æ 69 H7 ]5Штамповка160200509--+1 -0.5-65,0416664.5--20Растачивание черновое80150302001814+0,462,31467,35567,7667,32,762,2667,3+0.4640Растачивание получистовое203016100669+0,121,12968,48468,5268,41,281,2868,4+0.1265Растачивание чистовое203010,750205+0,0460,32568,80968,84668,80,4460,2268,8+0,04675Шлифование5154,320145+0,030,1916969,03690, 230,15469+0,03№Элементарная пов-ть детали. Технологический маршрут ее обработкиРасчетный припуск, мкмДопуск размера Т, ммРасчетный припуск 2Zном.р мм.Расчетный размер D, мм.Принятые размеры, мм.Принятые припуски, мм.Операционные размеры, мм.2Zmin.pT2Zном.р.Dp.Dmax.Dmin.2Zmax2ZminПоверхность 3 [Æ 99h12]5Штамповка-+1 -0.5-11411513.5--15Растачиваниечерновое2000-0,5413.7102.17102.2101.663.672.1102.2-0.5435Растачиваниечистовое300-0, 351.17999998.651.550.3399-0.35Поверхность 22 [Æ231 h8 ]5Штамповка-+1,1 -0.7-236,125238.1236,3--10Точение черновое2300-0.723233,125233,2232,383,622,4233,1-0.7240Точение получистовое500-0.291.22231,905231,9231,611,490,5231,9-0.2965Точение чистовое300-0.1150.59 231,315231230,9850,7150,31231,-0.115№Элементарная пов-ть детали. Технологический маршрут ее обработкиРасчетный припуск, мкмДопуск размера Т, ммРасчетный припуск 2Zном.р мм.Расчетный размер D, мм.Принятые размеры, мм.Принятые припуски, мм.Операционные размеры, мм.2Zmin.pT2Zном.р.Dp.Dmax.Dmin.2Zmax2ZminПоверхность 9 [Æ75H12]5Штамповка-+0.7 -1.4-70.370.768.6--20Точение черновое2200+0,743,372,9673,6472,94,643,372,9+0,7445Растачиваниечистовое1300+0,32,047575,3752,41,3675+0,3Поверхность 24 [Æ184 H12 ]5Штамповка-+0.9 -1.8-176,55176,9174.2--20Рассверливание2500+1,154,3180,85181,95180,85,953,9180,8+1,1540Растачиваниечистовое2000+0,463,15184184,461843,662,05184+0,46Поверхность 4 [Æ84 H7 ]5Штамповка-+0.7 -1.4-69.86670.768.6--25Точение черновое2500+0.5410.980.76681.2480.75.24480.7+0.5445Точение получистовое1800+0.142.3483.10683.2483.12.541.8683.1+0,1470Точение чистовое400+0.0540.5483.64683.65483.60.5540.4283.6+0.05490Шлифование300+0.0350.3548484.035840.4540.34684+0.035№Элементарная пов-ть детали. Технологический маршрут ее обработкиРасчетный припуск, мкмДопуск размера Т, ммРасчетный припуск 2Zном.р мм.Расчетный размер D, мм.Принятые размеры, мм.Принятые припуски, мм.Операционные размеры, мм.2Zmin.pT2Zном.р.Dp.Dmax.Dmin.2Zmax2ZminПоверхность 15 [Æ84H12]20Точение черновое2200+0,030.1916969.03690.23015445Растачиваниечистовое1300+0,32,048484,3842,41,3684+0,3Поверхность 21 [Æ30.5 H12 ]55Сверление2200+0.6 -18,118,618--55Рассверлить1300+0,312.330.530,830.52,41,3630.5+0,3Поверхность 26 [Æ185 h12 ]40Точить2300-0.7246190,125190189,283,622,4190-0.72Поверхность13 [Æ196 h12 ]40Точить2300-0.7240196,125196195.283,622,4196 -0.723.5 РАСЧЕТ ПРИПУСКОВ И ОПЕРАЦИОННЫХ РАЗМЕРОВ НА ОБРАБОТКУ ТОРЦЕВЫХ ПОВЕРХНОСТЕЙ
- 2750.
Турбина ТВаД мощностью 10000 кВт
-
- 2751.
Турбулентное течение в трубе
Контрольная работа пополнение в коллекции 30.06.2011
- 2751.
Турбулентное течение в трубе
-
- 2752.
Турниры юных физиков - нормы и правила
Информация пополнение в коллекции 17.07.2007 - Объявление о турнире дается вместе с заданиями и кратким изложением его правил за полтора-два месяца до даты проведения.
- К участию в турнире допускаются команды, подавшие заявки за две недели до даты его проведения.
- Если количество команд больше трех, то жеребьевкой формируются группы по 2-3 команды в каждой. Турнир между ними проводится одновременно, а победители выходят в следующий тур.
- Второй тур проводится по тем же заданиям через одну - две недели.
- Жюри формируется из преподавателей вузов и школьных учителей. Количество членов жюри зависит от количества команд, из расчета один человек на одну команду.
- Местом проведения турнира может стать большая аудитория или зал, вмещающий команды, жюри и болельщиков, оборудованные школьной доской и простейшими техническими средствами по заявкам команд.
- Применяется балльная система оценки выступления команд. Жюри предварительно производит «разбалловку» заданий по степени сложности и трудности выполнения.
- Команды поочередно выступают в следующих ролях:
- 2752.
Турниры юных физиков - нормы и правила
-
- 2753.
Тяговая задача для электропоезда с 3 вагонами массой 180 тонн и электровозом ВЛ-10 при заданном профиле пути
Курсовой проект пополнение в коллекции 18.06.2012 Программа автоведения поезда использует результаты расчета сил, действующих на поезд, расчета кривых движения и энергетических показателей, осуществляет непрерывный контроль этих результатов и управляет движением поезда. В процессе этого она наращивает силу тяги электровоза при разгоне с максимальной скоростью 5 позиций контроллера машиниста в сек. При ускорении поезда, равном или превышающем заданное, наращивание силы тяги прекращается. При достижении поездом заданной скорости движения поезда по перегону наращивание силы тяги прекращается, дальнейшее движение поезда осуществляется по инерции при работе электровоза на холостом ходу. Если при этом скорость поезда продолжает возрастать, то при скорости, превышающей заданную на 2 км/ч, включается режим подтормаживания до снижения скорости поезда ниже заданной на 0,5 км/ч. Тормозная сила определяется расстоянием между текущим положением поезда и концом участка пути, на котором осуществляется торможение. При этом величина замедления не должна превышать заданную. Кроме вышеупомянутых операций программа автоведения поезда обеспечивает: переключение тяговых двигателей электровоза на последовательное, параллельно-последовательное и параллельное соединение при достижении поездом соответствующих скоростей движения согласно тяговой характеристике электровоза; переключение режимов ослабления поля тяговых двигателей с целью поддержания тяги, необходимой для обеспечения заданной скорости движения поезда по перегону; включает при расстоянии от поезда до конечной станции не более 1000 м программу остановочного торможения поезда.
- 2753.
Тяговая задача для электропоезда с 3 вагонами массой 180 тонн и электровозом ВЛ-10 при заданном профиле пути
-
- 2754.
Тяготение
Курсовой проект пополнение в коллекции 09.12.2008 Черные дыры - это порождение гигантских сил тяготения. Они возникают, когда в ходе сильного сжатия большей массы материи возрастающее гравитационное поле ее становится настолько сильным, что не выпускает даже свет, из черной дыры не может вообще ничто выходить. В нее можно только упасть под действием огромных сил тяготения, но выхода оттуда нет.
С какой силой притягивает центральная масса какое-либо тело, находящееся на ее поверхности? Если радиус массы велик, то ответ совпадал с классическим законом Ньютона. Но когда принималось, что та же масса сжата до все меньшего и меньшего радиуса, постепенно проявлялись отклонения от закона Ньютона - сила притяжения получалась пусть незначительно, но несколько большей. При совершенно фантастических же сжатиях отклонения были заметнее. Но самое интересное, что для каждой массы существует свой определенный радиус, при сжатии до которого сила тяготения стремилась к бесконечности! Такой радиус в теории был назван гравитационным радиусом. Гравитационный радиус тем больше, чем больше масса тела. Но даже для астрономических масс он очень мал: для массы Земли это всего один сантиметр. В 1939 году американские физики Р.Оппенгеймер и Х.Снайдер дали точное математическое описание того, что будет происходить с массой, сжимающейся под действием собственного тяготения до все меньших размеров. Если сферическая масса, уменьшаясь, сожмется до размеров, равных или меньших, чем гравитационный радиус, то потом никакое внутреннее давление вещества, никакие внешние силы не смогут остановить дальнейшее сжатие. Действительно, ведь если бы при размерах, равных гравитационному радиусу, сжатие остановилось бы, то силы тяготения на поверхности массы были бы бесконечно велики и ничто с ними не могло бы бороться, они тут же заставят массу сжиматься дальше. Но при стремительном сжатии - падении вещества к центру - силы тяготения не чувствуются.
Всем известно, что при свободном падении наступает состояние невесомости и любое тело, не встречая опоры, теряет вес. То же происходит и со сжимающейся массой: на ее поверхности сила тяготения - вес - не ощущается. После достижения размеров гравитационного радиуса остановить сжатие массы нельзя. Она неудержимо стремится к центру. Такой процесс физики называют гравитационным коллапсом, а результатом является возникновение черной дыры. Именно внутри сферы с радиусом, равным гравитационному, тяготение столь велико, что не выпускает даже свет. Эту область Дж.Уиллер назвал в 1968 году черной дырой.
Название оказалось крайне удачным и было моментально подхвачено всеми специалистами. Границу черной дыры называют горизонтом событий. Название это понятно, ибо из-под этой границы не выходят к внешнему наблюдателю никакие сигналы, которые могли бы сообщить сведения о происходящих внутри событиях. О том, что происходит внутри черной дыры, внешний наблюдатель никогда ничего не узнает. Итак, вблизи черной дыры необычно велики силы тяготения, но это еще не все. В сильном поле тяготения меняются геометрические свойства пространства и замедляется течение времени. Около горизонта событий кривизна пространства становится очень сильной. Чтобы представить себе характер этого искривления, поступим следующим образом. Заменим в наших рассуждениях трехмерное пространство двумерной плоскостью (третье измерение уберем) - нам будет легче изобразить ее искривление. Пустое пространство изображается плоскостью. Если мы теперь поместим в это пространство тяготеющий шар, то вокруг него пространство слегка искривится - прогнется. Представим себе, что шар сжимается и его поле тяготения увеличивается. Перпендикулярно пространству отложена координата времени, как его измеряет наблюдатель на поверхности шара. С ростом тяготения увеличивается искривление пространства. Наконец, возникает черная дыра, когда поверхность шара сожмется до размеров, меньше горизонта событий, и "прогиб" пространства сделает стенки в прогибе вертикальными. Ясно, что вблизи черной дыры на столь искривленной поверхности геометрия будет совсем не похожа на евклидову геометрию на плоскости. С точки зрения геометрии пространства черная дыра действительно напоминает дыру в пространстве. Обратимся теперь к темпу течения времени. Чем ближе к горизонту событий, тем медленнее течет время с точки зрения внешнего наблюдателя. На границе черной дыры его бег и вовсе замирает. Такую ситуацию можно сравнить с течением воды у берега реки, где ток воды замирает. Это образное сравнение принадлежит немецкому профессору Д.Либшеру.
Но совсем иная картина представляется наблюдателю, который в космическом корабле отправляется в черную дыру. Огромное поле тяготения на ее границе разгоняет падающий корабль до скорости, равной скорости света. И тем не менее далекому наблюдателю кажется, что падение корабля затормаживается и полностью замирает на границе черной дыры. Ведь здесь, с его точки зрения, замирает само время. С приближением скорости падения к скорости света время на корабле также замедляет свой бег, как и на любом быстро летящем теле. И вот это замедление побуждает замирание падения корабля. Растягивающаяся до бесконечности картина приближения корабля к границе черной дыры из-за все большего и большего растягивания секунд на падающем корабле измеряется конечным числом этих все удлиняющихся (с точки зрения внешнего наблюдателя) секунд. По часам падающего наблюдателя или по его пульсу до пересечения границы черной дыры протекло вполне конечное число секунд. Бесконечно долгое падение корабля по часам далекого наблюдателя уместилось в очень короткое время падающего наблюдателя. Бесконечное для одного стало конечным для другого. Вот уж поистине фантастическое изменение представлений о течении времени. То, что мы говорили о наблюдателе на космическом корабле, относится и к воображаемому наблюдателю на поверхности сжимающего шара, когда образуется черная дыра. Наблюдатель, упавший в черную дыру, никогда не сможет оттуда выбраться, как бы ни были мощны двигатели его корабля. Он не сможет послать оттуда и никаких сигналов, никаких сообщений. Ведь даже свет - самый быстрый вестник в природе - оттуда не выходит. Для внешнего наблюдателя само падение корабля растягивается по его часам до бесконечности. Значит, то, что будет происходить с падающим наблюдателем и его кораблем внутри черной дыры, протекает уже вне времени внешнего наблюдателя (после его бесконечности по времени). В этом смысле черные дыры представляют собой "дыры во времени Вселенной". Конечно, сразу оговоримся, что это вовсе не означает, что внутри черной дыры время не течет. Там время течет, но это другое время, текущее иначе, чем время внешнего наблюдателя.
Что же произойдет с наблюдателем, если он отважится отправиться в черную дыру на космическом корабле? Силы тяготения будут увлекать его в область, где эти силы все сильнее и сильнее. Если в начале падения в корабле наблюдатель находился в невесомости и ничего неприятного не испытывал, то в ходе падения ситуация изменится. Чтобы понять, что произойдет, вспомним про приливные силы тяготения. Их действие связано с тем, что точки тела, находящиеся ближе к центру тяготения, притягиваются сильнее чем расположенные дальше. В результате притягиваемое тело растягивается.
В начале падения наблюдателя в черную дыру приливное растяжение может быть ничтожным. Но оно неизбежно нарастает в ходе падения. Как показывает теория, любое падающее в черную дыру тело попадает в область, где приливные силы становятся бесконечными. Это так называемая сингулярность внутри черной дыры. Здесь любое тело или частица будут разорваны приливными силами и перестанут существовать. Пройти сквозь сингулярность и не разрушиться не может ничто. Но если такой исход совершенно неизбежен для любых тел внутри черной дыры, то это означает, что в сингулярности перестает существовать и время. Свойства времени зависят от протекающих процессов. Теория утверждает, что в сингулярности свойства времени изменяются настолько сильно, что его непрерывный поток обрывается, оно распадается на кванты. Здесь надо еще раз вспомнить, что теория относительности показала необходимость рассматривать время и пространство совместно, как единое многообразие. Поэтому правильнее говорить о распаде в сингулярности на кванты единого пространства-времени.
Современная наука раскрыла связь времени с физическими процессами, позвонило "прощупать" первые звенья цепи времени в прошлом и проследить за ее свойствами в далеком будущем.
- 2754.
Тяготение
-
- 2755.
Углеродные нанотрубки
Информация пополнение в коллекции 09.12.2008
- 2755.
Углеродные нанотрубки
-
- 2756.
Угловое ускорение Закон Авогадро. Закон сохранения энергии
Контрольная работа пополнение в коллекции 25.06.2012 По касательной к шкиву маховика в виде диска диаметром D=75см и массой m=40 кг, приложена сила F=1кН. Определить угловое ускорение и частоту вращения n маховика, через время t=10 с, после начала действия силы, если радиус rт шкива равен 12 см. Силой трения пренебречь.
- 2756.
Угловое ускорение Закон Авогадро. Закон сохранения энергии
-
- 2757.
Углубленные экзаменационные билеты по физике и ответы (11 класс)
Методическое пособие пополнение в коллекции 09.12.2008 Третий закон Ньютона. Действия тел друг на друга всегда имеют хр-р взаимодействия. Каждое из тел действует на другое и сообщает силу а. Отношение модулей ускорений взаимодействующих тел равно обратному отношению их масс: а1/a2=m2/m1, или m1a1=m2a2. ускорения обоих тел направлены в противоположные стороны. Получаем: F1=-F2. тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Из-за взаимодействия тел друг на друга силы всегда появляются парами. Так же первый, второй и третий законы Ньютона справедливы, когда движение рассматривается относительно ИСО. Эти силы, кот. появляются одновременно всегда одной и той же природы, но они приложены к разным телам. Поэтому нельзя сказать, что сумма сил, приложенных к каждому телу, равна 0, что эти силы уравновешиваются. Уравновешиваться могут лишь силы, приложенные к одному и тому же телу. Третий закон Ньютона объясняет, как вообще возникает сила. Согласно этому закону, сила возникает при взаимодействии тел. При этом на каждое из взаимодействующих тел действует сила, и каждое получает ускорение. Действия двух тел друг на друга равны, но противоположны по направлению. Этот закон показывает, что из-за взаимодействия тел силы всегда появляются парами. Сила возникает при взаимодействии тел. Возьмём две одинаковые тележки, к одной из которых прикреплена упругая стальная пластина. Согнём пластинку и свяжем её ниткой, а второю тележку приставим к первой так, чтобы она плотно соприкасалась с другим концом пластинки. Перережем теперь нить, удерживающую пластинку в согнутом виде. Пластинка начнёт выпрямляться, и мы увидим, что обе тележки придут в движение. Это значит, что обе они получили ускорение. Так как масса тележек одинаковы, то одинаковы по модулю их ускорения, а следовательно и скорости, о чём можно судить по одинаковой длине перемещений тележек за одинаковое время. Если на одну из тележек положить какой-нибудь груз, то мы увидим, что перемещение тележек будут неодинаковы. Это значит, что и ускорение их неодинаковы: ускорение нагруженной тележки меньше, но её масса больше. Произведение же массы на ускорение т.е. сила, действующая на каждую из тележек по модулю одинаково. В этом примере как и в любых других можно отметить ещё одну особенность тех двух сил, которые, согласно третьему закону Ньютона, появляются одновременно, при взаимодействии: силы эти всегда одной и той же природы. Если, например, как и в нашем примере, на одно из тел со стороны другого действует сила упругости то оно отвечает это другому телу тоже силой упругости.
- 2757.
Углубленные экзаменационные билеты по физике и ответы (11 класс)
-
- 2758.
Ударные волны
Информация пополнение в коллекции 12.01.2009 Анализ многочисленных результатов экспериментов позволяет классифицировать связи между величинами функциональных составляющих тензора напряжений и структурными изменениями материала:
- температура в зоне фронта ударной волны и остаточная температура зависят как от гидростатического давления, так и от сдвиговых напряжений, хотя механизмы нагрева различны;
- двойникование инициируется главным образом сдвиговыми напряжениями, а гидростатическое напряжение может влиять лишь косвенно;
- фазовые превращения в основном обусловлены действием гидростатического компонента тензора напряжений, однако мартенситные превращение стали может быть также вызвано и сдвиговым напряжением или деформацией;
- образование точечных дефектов обусловлено в основном сдвиговыми напряжениями, а скорость их диффузии может как увеличиваться, так и уменьшаться в зависимости от гидростатической составляющей тензора напряжений;
- энергия дефектов упаковки кристаллической решетки изменяется в зависимости от гидростатического давления;
- источниками дислокаций являются дисперсные частицы, так как их сжимаемость отлична от сжимаемости матрицы, следовательно, это явление контролируется гидростатическими напряжениями;
- в материалах с некубической симметрией отдельные зерна характеризуются анизотропной сжимаемостью и гидростатическое сжатие приводит к появлению напряжений, обусловленных необходимостью совместности деформаций на границе зерна.
- 2758.
Ударные волны
-
- 2759.
Удивительный мир звука
Информация пополнение в коллекции 09.12.2008 Ослабление звука связано и с тем, что звуковая волна постепенно теряет энергию из- за поглощения ее средой. Степень поглощения опять- таки определяется свойствами среды. В более вязкой среде, например в вате, каучуке, поглощение больше. Однако оно во многом зависит и от частоты звука. Чем больше частота, тем больше поглощение. Звук частоты 10000 Гц поглощается в 100 раз больше, чем звук частоты 1000 Гц. Не случайно орудийный выстрел вблизи кажется нам оглушающе резким, издали - более мягким, глухим. Это объясняется тем, что звук от выстрела пушки содержит в себе как низкие, так высокие частоты, а звуки высоких частот поглощаются в воздухе больше, чем звуки низких частот. Находясь далеко от стреляющей пушки, мы слышим звуки более низких частот, а звуки высоких не доходят до нас - они поглощаются. Еще более наглядный пример, подтверждающий это явление- звучание удаляющегося оркестра. Сначала пропадают высокие звуки флейт и кларнетов, затем средние- корнетов и альтов, и наконец, когда оркестр будет уже совсем далеко, слышен только большой барабан.
- 2759.
Удивительный мир звука
-
- 2760.
Уличное освещение на солнечных батареях
Дипломная работа пополнение в коллекции 20.05.2011 При контакте двух областей n- и p- типа из-за градиента концентрации носителей заряда возникает диффузия в области с противоположным типом электропроводности. Диффузия (лат. diffusio - распространение, растекание, рассеивание) - процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией[2]. В p-области вблизи контакта после диффузии остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n-области - нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда, состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле, направленное от n-области к p-области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт - устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля, эти токи компенсируют друг друга). Между n- и p-областями при этом существует разность потенциалов, называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p-области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта. Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p-области, то потенциальный барьер понижается (прямое смещение), а область пространственного заряда сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p - n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p- и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает. Приложение отрицательного потенциала к p-области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p - n-переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p - n-переход течёт ток Is (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p - n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 105 - 106 раз. Благодаря этому p - n-переход может использоваться для выпрямления переменных токов.
- 2760.
Уличное освещение на солнечных батареях