Физика

  • 2821. Физика (шпаргалка: квантовая механика)
    Вопросы пополнение в коллекции 09.12.2008

    Valenta un vaditspejas zona. Zemako energijas zonu, kura ir neaiznemti energijas limeni, sauc par vaditspejas zonu. Aizliegtas zonas platuma ?Wg=Wc-Wv , Wc -vaditspejas zonas apaksejas robezas energija, Wv -valentas zonas augsejas robezas energija. Metali, dielektriki, pusvaditaji. Ipatnejo vaditspeju nosaka sakariba ?=nqu0, kur n, q, u0 -vaditspejas ladinneseju koncentracija. Dielektriki -dielektrikiem vaditspejas zona vispar nav elektronu, bet metaliem saja zona ir zinams daudzums elektronu. Vaditaju ipatnejas pretestibas karta ir 10-7 ?m un mazaka, dielektriku -108?m un lielaka. Vairakumam vielu ipatnejas pretestibas skaitliska vertiba atrodas starp noraditajam robezam. Sis vielas sauc par pusvaditajiem.

  • 2822. Физика 9-10 класс
    Методическое пособие пополнение в коллекции 09.12.2008

    Итак, чтобы получить круговые волны на поверхности воды нам необходимо создать некоторое возмущение в точке, которая будет центром кругов, образованных фронтами. Чтобы эта волна имела определенную (единственную) частоту необходимо непрерывное (периодическое) возмущение. Его можно осуществить с помощью колеблющегося в вертикальном направлении закрепленного на стержне шарика подходящих размеров. Вообще говоря, такая волна все-таки не будет синусоидальной - ее амплитуда будет обратно пропорциональной корню квадратному из расстояния до начала координат, как это следует из закона сохранения энергии. Обратите внимание на очевидное, но весьма важное для дальнейшего обстоятельство: причиной возникновения волны является не само движение шарика, а периодическое возмущение поверхности воды в точке возникновения волны.

  • 2823. Физика в годы Первой мировой войны
    Доклад пополнение в коллекции 27.02.2011

    В цитированной работе « О резонансе в телеграфии без проводов» он изучал избирательные свойства приемных систем, опираясь на теорию связанных колебаний. Эта теория приводит к выводу, что в связанных системах возбуждаются два колебания, разность частот которых зависит от степени связи. При этом период одного из колебаний будет больше любого из периодов вибратора и резонатора, а другой меньше, чем период собственных колебаний любой из этих систем. При этом возникают биения, продолжающиеся во все время колебаний. Вин устанавливает, что изменяя величину связи, можно вызвать либо весьма мощные затухающие колебания, которые передаются на большие расстояния. В итоге своего исследования Вин приходит к выводу, что задача об избирательном телеграфировании без проводов на близкие расстояния теоретически разрешима. Однако он пишет « Возможность практического ее осуществления будет зависеть от того насколько искра является источником затухания первичной цепи отравительной системы и допускает ли введение когерера во вторичную цепь приемной системы возможность острой настройки». Он добавляет: « Все же такая система, основанная на 4-хкратном резонансе, которая заключается в передатчике непостоянную искру, на приемной станции- не менее непостоянный когерер является чувствительным прибором, который способен к функционированию лишь в лабораториях и при том в руках опытных физиков.»

  • 2824. Физика в оркестре
    Информация пополнение в коллекции 18.10.2011

    Человек воспринимает окружающий мир органами чувств. Одним из самых важных способов получения информации является слух. Весь мир - совокупность звуков. Мы привыкли слышать различные звуки: шорох шагов, скрип дверей, шелест листьев, пение птиц, человеческую речь. Также человек разговаривает с помощью звуков, общается с людьми и получает информацию. Животные тоже общаются с помощью звуков. Человек очень хорошо изучил все свойства звука и это можно увидеть на примере конструкции театров: зал построен так, чтобы звук был максимально четким и все зрители могли слышать его даже с самых последних рядов. Жизнь была бы невозможна без звука, потому что мы бы не смогли услышать красоту природы, великолепие оперного пения и разнообразие музыкальных композиций. Так же невозможно не задуматься над красотой звука в оркестре. Мы решили изучить и выделить различия в звучании инструментов в оркестре методом физического исследования. Поэтому мы и назвали свою исследовательскую работу «Физика в оркестре».

  • 2825. Физика газовых смесей
    Контрольная работа пополнение в коллекции 28.11.2011
  • 2826. Физика движения тела
    Контрольная работа пополнение в коллекции 18.07.2007

    и передаёт тепло телу с t1= 17 0C. Найти к.п.д. ? цикла, количество теплоты Q2, отнятое у холодного тела за один цикл и количество теплоты Q1 переданное более горячему телу за один цикл.

  • 2827. Физика за 9 класс
    Информация пополнение в коллекции 12.01.2009

    Твёрдые тела находятся преимущественно в кристаллическом состоянии. Кристаллы - это твёрдые тела, атомы и молекулы которых занимают определённые, упорядоченные положения в пространстве. Кристаллы имеют плоские грани и правильную внешнюю форму. Физические свойства кристалла зависят от выбранного в нём направления, например, кусок слюды в одном направлении можно легко разорвать на тонкие пластинки, но разорвать его по направлению, перпендикулярному пластинкам, значительно сложнее. Это объясняется строением его кристаллической решётки. Зависимость физических свойств от направления внутри кристалла называют анизотропией. Все кристаллы анизотропные. Твёрдое тело, состоящее из большого числа маленьких кристалликов называют поликристаллическим. В поликристаллических телах все направления равноправны и их свойства по всем направлениям одинаковы, но в каждом из маленьких кристалликов анизотропия проявляется. Одиночные кристаллы называются монокристаллами. Примером монокристалла служит крупинка соли, а поликристалла - металлы, кусок сахара. Кроме кристаллической твёрдые тела имеют ещё и амфорную форму. У амфорных тел нет строгого порядка в расположении частиц. Только ближайшие атомы-соседи располагаются в строгом порядке. Свойства: 1) Все амфорные тела изотропны, то есть их свойства одинаковы по всем направлениям. 2) При внешних воздействиях амфорные тела обнаруживают одновременно другие свойства как твёрдые тела и текучесть как жидкости. 3) При низких температурах амфорные тела напоминают твёрдые тела по своим свойствам, а при повышении температуры их свойства их свойства всё более и более приближаются к свойствам жидкости. Определённой температуры плавления у амфорных тел нет. Например стекло, смола. Понимание структуры амфорных и кристаллических тел позволяет создавать материалы с заданными свойствами.

  • 2828. Физика и другие науки
    Информация пополнение в коллекции 12.01.2009

    Огромный поток научной информации приносят из космоса другие виды электромагнитного излучения, которые не достигают поверхности Земли, поглощаясь в ее атмосфере. С выходом человека в космическое пространство родились новые разделы астрономии: ультрафиолетовая и инфракрасная астрономия, рентгеновская и гамма-астрономия. Необычайно расширилась возможность исследования первичных космических частиц, падающих на границу земной атмосферы: астрономы могут исследовать все виды частиц и излучений, приходящих из космического пространства. Объем научной информации, полученной астрономами за последние десятилетия, намного превысил объем информации, добытой за всю прошлую историю астрономии. Используемые при этом методы исследования и регистрирующая аппаратура заимствуются из арсенала современной физики; древняя астрономия превращается в молодую, бурно развивающуюся астрофизику.

  • 2829. Физика и современная энергетика
    Информация пополнение в коллекции 09.12.2008

    атомная электростанция (АЭС) - электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор . Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию, В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu) При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического, топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, края уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

  • 2830. Физика и энергетика
    Информация пополнение в коллекции 12.01.2009
  • 2831. Физика металлов
    Контрольная работа пополнение в коллекции 06.10.2010

    Винтовые дислокации можно представить следующим образом. Монокристалл надрезается плоскостью скольжения на определённую глубину, и одна часть кристалла сдвигается параллельно плоскости надреза на одно межатомное расстояние вниз. В результате получается, что горизонтальные плоскости кристиллической решётки закручиваются винтом вокруг оси и выходят на поверхность кристалла. Винтовые дислокации, в основном, образуются при затвердевании (кристаллизации) металлов

  • 2832. Физика нейтрино
    Информация пополнение в коллекции 12.01.2009
  • 2833. Физика низких температур. Влияние низких температур на живые организмы и неживую материю
    Курсовой проект пополнение в коллекции 21.06.2012

    %20%d0%bf%d0%be%d0%bb%d1%8c%d0%b7%d1%83%d1%8e%d1%82%d1%81%d1%8f%20%d0%bf%d0%be%d0%bd%d1%8f%d1%82%d0%b8%d0%b5%d0%bc%20%d0%bc%d0%b0%d0%b3%d0%bd%d0%b8%d1%82%d0%bd%d0%be%d0%b9%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80%d1%8b%20%d0%a2*,%20%d0%ba%d0%be%d1%82%d0%be%d1%80%d1%83%d1%8e%20%d0%be%d0%bf%d1%80%d0%b5%d0%b4%d0%b5%d0%bb%d1%8f%d1%8e%d1%82%20%d0%b8%d0%b7%20%d0%b8%d0%b7%d0%bc%d0%b5%d1%80%d0%b5%d0%bd%d0%b8%d0%b9%20%d0%bc%d0%b0%d0%b3%d0%bd%d0%b8%d1%82%d0%bd%d0%be%d0%b9%20%d0%b2%d0%be%d1%81%d0%bf%d1%80%d0%b8%d0%b8%d0%bc%d1%87%d0%b8%d0%b2%d0%be%d1%81%d1%82%d0%b8%20<http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F%20%D0%B2%D0%BE%D1%81%D0%BF%D1%80%D0%B8%D0%B8%D0%BC%D1%87%D0%B8%D0%B2%D0%BE%D1%81%D1%82%D1%8C/>%20c%20%d0%bf%d0%b0%d1%80%d0%b0%d0%bc%d0%b0%d0%b3%d0%bd%d0%b8%d1%82%d0%bd%d0%be%d0%b9%20%d1%81%d0%be%d0%bb%d0%b8.%20%d0%a1%d0%be%d0%b3%d0%bb%d0%b0%d1%81%d0%bd%d0%be%20%d0%b7%d0%b0%d0%ba%d0%be%d0%bd%d1%83%20<http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%9A%D1%8E%D1%80%D0%B8%20%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD/>%20%d0%9a%d1%8e%d1%80%d0%b8,%20%d0%bf%d1%80%d0%b8%20%d0%b4%d0%be%d1%81%d1%82%d0%b0%d1%82%d0%be%d1%87%d0%bd%d0%be%20%d0%b2%d1%8b%d1%81%d0%be%d0%ba%d0%b8%d1%85%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80%d0%b0%d1%85%20c%20~%201/T*.%20%d0%94%d0%bb%d1%8f%20%d0%bc%d0%bd%d0%be%d0%b3%d0%b8%d1%85%20%d1%81%d0%be%d0%bb%d0%b5%d0%b9%20%d0%b7%d0%b0%d0%ba%d0%be%d0%bd%20%d0%9a%d1%8e%d1%80%d0%b8%20%d1%81%d0%bf%d1%80%d0%b0%d0%b2%d0%b5%d0%b4%d0%bb%d0%b8%d0%b2%20%d0%b8%20%d0%bf%d1%80%d0%b8%20%d0%b3%d0%b5%d0%bb%d0%b8%d0%b5%d0%b2%d1%8b%d1%85%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80%d0%b0%d1%85.%20%d0%ad%d0%ba%d1%81%d1%82%d1%80%d0%b0%d0%bf%d0%be%d0%bb%d0%b8%d1%80%d1%83%d1%8f%20%d1%8d%d1%82%d1%83%20%d0%b7%d0%b0%d0%ba%d0%be%d0%bd%d0%be%d0%bc%d0%b5%d1%80%d0%bd%d0%be%d1%81%d1%82%d1%8c%20%d0%b2%20%d0%be%d0%b1%d0%bb%d0%b0%d1%81%d1%82%d1%8c%20%d1%81%d0%b2%d0%b5%d1%80%d1%85%d0%bd%d0%b8%d0%b7%d0%ba%d0%b8%d1%85%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80,%20%d0%be%d0%bf%d1%80%d0%b5%d0%b4%d0%b5%d0%bb%d1%8f%d1%8e%d1%82%20%d0%bc%d0%b0%d0%b3%d0%bd%d0%b8%d1%82%d0%bd%d1%83%d1%8e%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80%d1%83%20%d0%ba%d0%b0%d0%ba%20%d0%b2%d0%b5%d0%bb%d0%b8%d1%87%d0%b8%d0%bd%d1%83,%20%d0%be%d0%b1%d1%80%d0%b0%d1%82%d0%bd%d0%be%20%d0%bf%d1%80%d0%be%d0%bf%d0%be%d1%80%d1%86%d0%b8%d0%be%d0%bd%d0%b0%d0%bb%d1%8c%d0%bd%d1%83%d1%8e%20%d0%b2%d0%be%d1%81%d0%bf%d1%80%d0%b8%d0%b8%d0%bc%d1%87%d0%b8%d0%b2%d0%be%d1%81%d1%82%d0%b8.%20%d0%94%d0%bb%d1%8f%20%d0%bf%d0%be%d0%bb%d1%83%d1%87%d0%b5%d0%bd%d0%b8%d1%8f%20%d1%82%d0%be%d1%87%d0%bd%d1%8b%d1%85%20%d1%80%d0%b5%d0%b7%d1%83%d0%bb%d1%8c%d1%82%d0%b0%d1%82%d0%be%d0%b2%20%d0%bd%d0%b5%d0%be%d0%b1%d1%85%d0%be%d0%b4%d0%b8%d0%bc%d0%be%20%d1%83%d1%87%d0%b8%d1%82%d1%8b%d0%b2%d0%b0%d1%82%d1%8c%20%d1%80%d0%b0%d0%b7%d0%bb%d0%b8%d1%87%d0%bd%d1%8b%d0%b5%20%d0%bf%d0%be%d0%b1%d0%be%d1%87%d0%bd%d1%8b%d0%b5%20%d1%84%d0%b0%d0%ba%d1%82%d0%be%d1%80%d1%8b:%20%d0%b0%d0%bd%d0%b8%d0%b7%d0%be%d1%82%d1%80%d0%be%d0%bf%d0%b8%d1%8e%20%d0%b2%d0%be%d1%81%d0%bf%d1%80%d0%b8%d0%b8%d0%bc%d1%87%d0%b8%d0%b2%d0%be%d1%81%d1%82%d0%b8,%20%d0%b3%d0%b5%d0%be%d0%bc%d0%b5%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d1%83%d1%8e%20%d1%84%d0%be%d1%80%d0%bc%d1%83%20%d0%be%d0%b1%d1%80%d0%b0%d0%b7%d1%86%d0%b0%20%d0%b8%20%d0%b4%d1%80.%20%d0%9e%d0%b1%d0%bb%d0%b0%d1%81%d1%82%d1%8c%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80,%20%d0%b2%20%d0%ba%d0%be%d1%82%d0%be%d1%80%d0%be%d0%b9%20%d0%bc%d0%b0%d0%b3%d0%bd%d0%b8%d1%82%d0%bd%d0%b0%d1%8f%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80%d0%bd%d0%b0%d1%8f%20%d1%88%d0%ba%d0%b0%d0%bb%d0%b0%20%d0%b4%d0%be%d1%81%d1%82%d0%b0%d1%82%d0%be%d1%87%d0%bd%d0%be%20%d0%b1%d0%bb%d0%b8%d0%b7%d0%ba%d0%b0%20%d0%ba%20%d1%82%d0%b5%d1%80%d0%bc%d0%be%d0%b4%d0%b8%d0%bd%d0%b0%d0%bc%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%be%d0%b9,%20%d0%b7%d0%b0%d0%b2%d0%b8%d1%81%d0%b8%d1%82%20%d0%be%d1%82%20%d0%ba%d0%be%d0%bd%d0%ba%d1%80%d0%b5%d1%82%d0%bd%d0%be%d0%b9%20%d1%81%d0%be%d0%bb%d0%b8.%20%d0%9d%d0%b0%d0%b8%d0%b1%d0%be%d0%bb%d0%b5%d0%b5%20%d1%88%d0%b8%d1%80%d0%be%d0%ba%d0%be%20%d0%b4%d0%bb%d1%8f%20%d0%b8%d0%b7%d0%bc%d0%b5%d1%80%d0%b5%d0%bd%d0%b8%d1%8f%20%d1%81%d0%b2%d0%b5%d1%80%d1%85%d0%bd%d0%b8%d0%b7%d0%ba%d0%b8%d1%85%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80%20%d0%b4%d0%be%206%20%d0%bc%d0%9a%20%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd%d1%8f%d1%8e%d1%82%20%d1%86%d0%b5%d1%80%d0%b8%d0%b9-%d0%bc%d0%b0%d0%b3%d0%bd%d0%b8%d0%b5%d0%b2%d1%8b%d0%b9%20%d0%bd%d0%b8%d1%82%d1%80%d0%b0%d1%82,%20%d0%b4%d0%bb%d1%8f%20%d0%ba%d0%be%d1%82%d0%be%d1%80%d0%be%d0%b3%d0%be%20%d1%80%d0%b0%d1%81%d1%85%d0%be%d0%b6%d0%b4%d0%b5%d0%bd%d0%b8%d0%b5%20%d1%88%d0%ba%d0%b0%d0%bb%20%d0%bf%d1%80%d0%b8%20%d1%83%d0%ba%d0%b0%d0%b7%d0%b0%d0%bd%d0%bd%d0%be%d0%b9%20%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80%d0%b5%20%d0%bc%d0%b5%d0%bd%d1%8c%d1%88%d0%b5%200,1%20%d0%bc%d0%9a.">В магнитной термометрии <http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F%20%D1%82%D0%B5%D1%80%D0%BC%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/> пользуются понятием магнитной температуры Т*, которую определяют из измерений магнитной восприимчивости <http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F%20%D0%B2%D0%BE%D1%81%D0%BF%D1%80%D0%B8%D0%B8%D0%BC%D1%87%D0%B8%D0%B2%D0%BE%D1%81%D1%82%D1%8C/> c парамагнитной соли. Согласно закону <http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%9A%D1%8E%D1%80%D0%B8%20%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD/> Кюри, при достаточно высоких температурах c ~ 1/T*. Для многих солей закон Кюри справедлив и при гелиевых температурах. Экстраполируя эту закономерность в область сверхнизких температур, определяют магнитную температуру как величину, обратно пропорциональную восприимчивости. Для получения точных результатов необходимо учитывать различные побочные факторы: анизотропию восприимчивости, геометрическую форму образца и др. Область температур, в которой магнитная температурная шкала достаточно близка к термодинамической, зависит от конкретной соли. Наиболее широко для измерения сверхнизких температур до 6 мК применяют церий-магниевый нитрат, для которого расхождение шкал при указанной температуре меньше 0,1 мК.

  • 2834. Физика от Аристотеля до Ньютона
    Дипломная работа пополнение в коллекции 27.02.2012
  • 2835. Физика подкритического ядерного реактора
    Информация пополнение в коллекции 09.12.2008

    (в соответствии с соотношением ) М=Zmp+(A-Z)mn-(A)A, где(А)с - энергия связи, приходящаяся на один нуклон. Величина (А) зависит от деталей строения соответствующего ядра... Однако наблюдается общая тенденция зависимости её от атомного веса. А именно, пренебрегая мелкими деталями, можно описать эту зависимость плавной кривой, возрастающей при малых. А, достигающей максимума в середине таблицы Менделеева и убывающей после максимума к большим значениям А. Представим себе, что тяжелое ядро с атомным весом А и массой М разделилось на два ядра А1 и А2 с массами соответственно М1 и М2, причем А1 + А2 равно А либо несколько меньше его, так как в процессе деления могут вылететь несколько нейтронов. Возьмем для наглядности случай А1 + А2 = А. Рассмотрим величину разности масс начального ядра и двух конечных ядер, причем будем считать что А1 = А2, так, что 1)=2), М=М-М12=-(А)А+1)(А12) =А(1)- 1)). Если А соответствует тяжелому ядру в конце Периодической системы, то А1 находится в середине и имеет максимальное значение2). Значит, М>0 и, следовательно, в процессе деления выделяется энергия Ед=Мс2. Для тяжелых ядер, например для ядер урана, (1)- (А))с2=1 МэВ. Так что при А=200 имеем оценку Ед = 200 МэВ. Напомним, что электрон-вольт (эВ) внесистемная единица энергии, равная энергии, приобретаемой элементарным зарядом под действием разности потенциалов 1В ( 1эВ = 1,6*10-19 Дж). Например, средняя энергия, выделяемая при делении ядра 235U

  • 2836. Физика полимеров
    Информация пополнение в коллекции 13.09.2010

    Несмотря на широкое промышленное применение целлюлозы и ее производных, принятая в настоящее время химическая структурная формула целлюлозы была предложена (У.Хоуорсом) лишь в 1934. Правда, с 1913 была известна ее эмпирическая формула C6H10O5, определенная по данным количественного анализа хорошо промытых и высушенных образцов: 44,4% C, 6,2% H и 49,4% O. Благодаря работам Г.Штаудингера и К.Фройденберга было известно также, что это длинноцепная полимерная молекула, состоящая из показанных на рис. 1 повторяющихся глюкозидных остатков. Каждое звено имеет три гидроксильные группы одну первичную ( CH2 Ч OH) и две вторичные (>CH Ч OH). К 1920 Э.Фишер установил структуру простых сахаров, и в том же самом году рентгенографические исследования целлюлозы впервые показали четкую дифракционную картину ее волокон. Рентгенограмма волокна хлопка указывает на четко выраженную кристаллическую ориентацию, но волокно льна еще более упорядочено. При регенерации целлюлозы в форме волокна кристалличность в значительной мере теряется. Как нетрудно видеть в свете достижений современной науки, структурная химия целлюлозы практически стояла на месте с 1860 по 1920 по той причине, что все это время оставались в зачаточном состоянии вспомогательные научные дисциплины, необходимые для решения проблемы.

  • 2837. Физика пространства и материи
    Статья пополнение в коллекции 10.03.2008

    Изотропные потоки растворенного в пространстве вещества, мчащиеся со всех сторон, в любую точку пространства с огромными скоростями составляют эфир. Средняя скорость эфирных потоков определяет скорость света. Весь спектр свойств материи порожден эфиром. Без эфира материя обладает только плотностью и непроницаемостью. Только эфир придает ей твердость, форму, гравитацию и электромагнетизм. Эфир образует гравитацию, электричество, магнетизм и активно участвует во всех случаях энергообмена. Обнаруженные свойства пространства, по сути, есть свойства эфира. Само пространство имеет только одно свойство, это абсолютная прозрачность. Все остальные свойства созданы эфиром. Можно предположить, что в состав эфира входят иные миры, мчащиеся сквозь нас с гипер световыми скоростями, а мы являемся частью их эфира. Но тут неувязка с проницаемостью чд, они абсолютно не проницаемы. Полный хаос эфирных потоков создает равномерное давление со всех сторон, что порождает гармонию мироздания. Сгустки вещества, размер которых позволяет эфиру равномерно обжать их со всех сторон, обретают твердость и форму шара. Своей непроницаемостью они создают вокруг себя сферическую эфирную тень, что и является гравитационным полем. Внутренняя энергия таких шариков равна нулю, не зависимо от размера. По сути, это черные дыры, только маленькие. Иисус Христос знал это, “тот кто имеет, тому дано будет, а кто не имеет, отнимется последнее” это про те сгустки вещества, если они имеют достаточную массу, то будут приростать эфирной пылью, если масса мала, то будут разбиты в пыль. Энергией обладают орбитальные системы, состоящие из всевозможных вариаций объединения твердых шариков. Вся материя однородна, никакого (антивещества) нет, наблюдаемая аннигиляция всего лишь взаимная остановка от лобового столкновения. Возникает эффект исчезновения, сами шарики столь малы, что после остановки не обнаруживаются. Все известные сегодня элементарные частицы являются орбитальными системами, внешние орбиты мы принимаем за плотную поверхность. При попадании такой энергонасыщеной материи на поверхность чд орбитальная структура материи раздавливается эфиром. Твердые шарики сливаются с телом чд, лишь малая часть их в виде жесткого излучения уносит выделенную энергию разрушенного вещества. Внутренняя энергия чд нулевая. Когда чд окружена большим количеством вещества, его разрушение замедляется отбрасыванием вещества от поверхности чд мощным излучением выделяющейся энергии. В центре солнц и почти всех планет есть изюминка, то есть чд. Название чд не верно, дыра-это пустое место в чем-то плотном, чд на оборот, шарик абсолютно плотной материи в окружении более разряженного пространства. Свойства чд меняются с ее ростом, ее размер определяет скорость разрушения попавшего на ее поверхность вещества. Гигантские чд моментально уничтожают попавшие на них элементы. Тела чд содержат вещество угасших галактик, но при столкновении чд эти угасшие миры вновь возрождаются. Вспышки сверх новых звезд возникают от столкновения чд. По внешнему виду взрыва можно определить участников катаклизма. Если столкнулись две чд одинакового размера, то внешний вид взрыва будет копировать, как бы , в увеличенном и замедленном виде прикосновение двух шаров, где точка соприкосновения будет самой яркой зоной, и далее по обоим шарам яркость будет убывать. Видна будет ось их полета до столкновения, линия от самой темной точки на одном шаре через самую яркую точку соприкосновения к темной точке на другом шаре, и яркая плоскость излучения из точки прикосновения перпендикулярная оси столкновения. Со временем в плоскости перпендикулярной оси столкновения может возникнуть яркое кольцо первичного выброса самой горячей плазмы. Разность размеров столкнувшихся чд будет отображена с фотографической точностью во внешнем виде вспышки. Существует множество вариантов столкновений чд, разная встречная скорость, разная масса, разного вида оболочки чд, скорость и направление вращения. Любая звезда, это чд в оболочке. Все это будет отображаться в форме вспышки и в спектре излучения. Если форма взрыва один равномерно яркий шар, то взрыв произошел не от столкновения, а от внутренних процессов. Определив размеры и массы обнаруженных в космосе чд, можно довольно точно рассчитать удельный вес абсолютно плотной материи. Это позволило бы нам точно определять, на сколько энергетично то, или иное вещество. Внутренняя энергия материи различна. Огромная у молодых легких элементов, и уменьшается с возрастом, старея, они превращаются в более тяжелые и менее энергетичные. Но при образовании достаточно больших чд внутри элементов начинается свой звездный процесс порождающий радиоактивность. Утяжеление элементов идет с выделением энергии, создание более легких элементов требует затраты энергии.

  • 2838. Физика твердого тела
    Информация пополнение в коллекции 09.12.2008

     

    1. Задание……………………………………………………………………………...2
    2. Теоретическая часть…………………………………………………………....3
    3. Классификация веществ по электропроводности………….3
    4. Собственные и примесные полупроводники…………………..5
    5. Металлы, диэлектрики и полупроводники в зонной теории………………………………………………………………..….6
    6. Расчет эффективных масс плотности состояний для электронов и дырок…………………………………………………..7
    7. Расчет уровня Ферми и концентрации носителей заряда в примесном полупроводнике………………………………...……...9
    8. Расчет времени жизни носителей заряда……………………13
    9. Расчет (T). Формулы для подвижности……………….……..13
    10. Расчет зависимости RH(T)…………………………………………15
    11. Расчетная часть………………………………………………………………...17
  • 2839. Физика, основы теории
    Реферат пополнение в коллекции 08.12.2009

    ВИДЫ САМОСТОЯТЕЛЬНОГО РАЗРЯДА.

    1. Тлеющий разряд представляет собой ток малой плотности, возникающий при низком давлении (от сотых долей до нескольких мм.рт.ст.) и напряжении на электродах порядка нескольких сотен вольт. Тлеющий разряд сопровождается свечением столба газа. Его используют в светящихся рубках рекламы (заполненных неоном, аргоном), а также в лампах дневного света для возбуждения люминофора, которым покрыта внутренняя поверхность трубки.
    2. Коронный разряд представляет собой ток через газ при атмосферном давлении, возникающий под действием неоднородного электрического поля высокой напряженности. Коронный разряд сопровождается слабым свечением и небольшим шумом. Коронный разряд наблюдается вблизи заостренных частей проводников в том случае, когда напряженность электрического поля возле проводника превышает 3 · 106 В/м. Причиной разряда является ударная ионизация газа, происходящая в области, непосредственно граничащей с проводником. Особенно нежелательно возникновение этого разряда в высоковольтных ЛЭП, так как он приводит к потерям электрической энергии. Коронный разряд используют в электрических фильтрах для очистки продуктов сгорания топлива.
    3. Дуговой разряд это ток большой плотности через газ при невысоких напряжениях (десятки вольт). Дуговой разряд сопровождается сильным свечением газа и очень высокой температурой (несколько тысяч градусов). Дуговой разряд поддерживается термоэлектронной эмиссией, происходящей с поверхности разогретого катода, и термической ионизацией молекул газа. Дуговой разряд применяют для дуговой сварки металлов; в электрометаллургии (в дуговых печах для выплавки металлов); в химических производствах (например, для получения из воздуха оксида азота в целях производства азотной кислоты); в качестве сильного источника света (в прожекторах, в дуговых лампах) и т.д.
    4. Искровой разряд представляет собой пробой газа при кратковременном лавинообразном увеличении числа ионов в нем, происходящем в результате ударной ионизации при высоких напряжениях. Искровой разряд сопровождается свечением и звуковым эффектом, а также излучением электромагнитных волн. При искровом разряде в газе возникают каналы сильно ионизированного газа стриммеры, по которым происходит распространение искрового разряда. Газ в стриммерах сильно нагревается, что приводит к резкому увеличению его давления. Стремясь расшириться, газ создает звуковые волны, вызывающие звуковые эффекты. Мощной разновидностью искрового разряда является молния. В технике искровой разряд используют для поджигания рабочей смеси в цилиндрах карбюраторных двигателей внутреннего сгорания.
  • 2840. Физика. Билеты к экзамену за 9 класс
    Методическое пособие пополнение в коллекции 09.12.2008

    Билет №1

    1. Механическое движение. Система отсчета. Материальная точка. Траектория. Путь и перемещение материальной точки.
    2. Лабораторная работа. Определение коэффициента трения скольжения.