Физика

  • 3021. Электрические ракетные ионные двигатели
    Курсовой проект пополнение в коллекции 07.02.2010

    Известно, что в разряде низкого давления без магнитного поля длина пробега первичных электронов может быть существенно увеличена за счет подачи катодного потенциала на стенки разрядной камеры и одно временного уменьшения размеров анода. Схема ионного источника такого типа представлена на рис.2.13. Разрядная камера 1 из тугоплавкого металла имеет форму параллелепипеда. В передней стенке камеры имеется прямоугольное эмиссионное отверстие для извлечения ионов. Боковые стенки камеры выполнены в виде круглого полуцилиндра, благодаря чему уменьшается количество нейтральных атомов, непосредственно отражающихся от боковых стенок в сторону эмиссионного отверстия. Термокатод 2 в виде нескольких вольфрамовых прутков, электрически соединенных параллельно, размещается в разрядной камере на некотором расстоянии от ее задней стенки. Анодом служат вольфрамовые стержни 3. Пары рабочего вещества поступают в парораспределитель 4. В задней стенке камеры просверлено большое число отверстий диаметром около одного миллиметра, равномерно распределенных по площади стенки. Это обеспечивает равномерную подачу атомов в разрядный объем. Для уменьшения тепловых потерь элементы источника окружены многослойным тепловым экраном 5. В рассматриваемом ионном источнике стенки разрядной камеры поддерживаются под катодным потенциалом, относительная площадь анода SiHlSK мала, и первичные электроны, ускоренные в катодном слое разряда, совершают осцилляции в разрядном объеме. При этом концентрация первичных электронов практически одинакова во всех точках разрядной камеры, а угловое распределение их скоростей является изотропным. Благодаря потенциальному барьеру на стенках камеры средний пробег первичных электронов до попадания на анод возрастает.

  • 3022. Электрические свойства сплавов типа твердых растворов
    Информация пополнение в коллекции 12.01.2009

    При термическом, механическом или радиационном воздействиях на металлы и сплавы их свойства претерпевают значительные изменения. Еще со времен работы Курнакова, Жемчужного, Заседателева известно об изменении физических свойств при возникновении сверхструктуры в твердых растворах. Многочисленными последующими исследованиями было установлено, что качественная картина электросопротивления сплавов, в которых существует данный порядок, при отжиге и деформации сходна с картиной для чистых металлов. Поэтому еще сравнительно недавно было широко распространено мнение, что поведение твердых растворов при обработке должно подчиняться тем же закономерностям, какие характерны для чистых металлов. Это мнение подкреплялось большим числом экспериментов, проведенных на таких сплавах, как Cu Zn, Cu Al, Cu Ga, Cu Ge, Ag Zn. Поэтому, когда Томасом было обнаружено, что электрическое сопротивление при отжиге однофазных деформированных сплавов, у которых хотя бы один из компонентов является переходным металлом, не падает а растет, это было воспринято и им, да и другими исследователями как проявление возникновения при отжиге нового, особого R-состояния. Томас предположил, что в этом случае происходит какой-то неизвестный фазовый переход, при котором атомы образуют некие комплексы, вследствие чего заполняются ранее не заполненные d-оболочки и уменьшается концентрация носителей электричества.

  • 3023. Электрические сети
    Контрольная работа пополнение в коллекции 12.07.2012

    Линия силовой сети напряжением 127/380 В комбината бытового обслуживания выполнена проводами с алюминиевыми жилами и с полихлорвиниловой изоляцией проложенными в пожароопасном помещении в трубах (три провода в одной трубе). Температура окружающего воздуха +25°С, длительный ток линии Iдл = 70А, кратковременный ток линии (при самозапуске двигателей вентиляции) Iкр = 350А. Выбрать сечение проводов линии, если:

  • 3024. Электрические сети предприятий железнодорожного транспорта
    Курсовой проект пополнение в коллекции 09.11.2010

    Расчет производится для сети с двусторонним питанием, по следующей программе, реализованной на языке FORTRAN. В данной программе произведен расчет кольцевой сети. Для определения сечения кабеля по экономической плотности тока произведен расчет эквивалентного тока. Определяются также точки потокораздела активной и реактивной мощностей для определения перетоков мощности в сети. На основании чего рассчитываются потери напряжения в линии. И производится расчет потерь напряжения в аварий ных режимах работы электрической сети (обрыв в начале линии и в конце):

  • 3025. Электрические сети сельскохозяйственного назначения
    Дипломная работа пополнение в коллекции 19.08.2011

    Наименование величиныОбозначение и метод определенияЧисловое значение110 кВ35 кВ10кВ123Первичный ток на сторонах защищаемого трансформатора, соответствующий его номинальной мощности, АСхема соединения трансформаторов тока-YY?Коэффициент трансформации трансформаторов токаКI600/5900/51500/5Вторичный ток в плечах защиты, соответствующий номинальной мощности защищаемого трансформатораДифференциальная защита трансформатора выполнена на реле ДЗ1-11/3Первичный ток срабатывания защиты, выбранной по условию отстройки от броска тока намагничиванияIкз?Кн*Iном1,5*80,33=120,5Минимальный ток срабатывания на основной стороне (10 кВ), АРасчетное число витков рабочей обмотки насыщающегося трансформатора реле для основной стороны (10 кВ)Предварительно принятое число витков для установки на основной стороне (10 кВ), АWосн.раб13Соответствующий минимальный ток срабатывания на основной стороне (10 кВ), АРасчетное число витков рабочей обмотки насыщающегося трансформатора реле для установки на стороне 35 кВПредварительно принятое число витков для установки на стороне 35 кВWI.раб28Расчетное число витков рабочей обмотки насыщающегося трансформатора реле для установки на стороне 110 кВПредварительно принятое число витков для установки на стороне 110 кВWI.раб92Окончательно принятое число витков обмотки насыщающегося трансформатора реле для установки на основной (10 кВ) и не основной (110 кВ) сторонахНа стороне 10 кВ Wосн.раб На стороне 35 кВ На стороне 110 кВ13 28 92Первичный расчетный ток небаланса с учетом составляющей IIIIнб.расч, максимальный режим, точка КЗ К-2, А(1*1*0,1+0,16)*200+ +Расчетное число витков тормозной обмотки насыщающегося трансформатора реле, выполненной на стороне 10 кВПринятое число витков тормозной обмотки, витWторм18Расчетная чувствительность защиты в максимальном режиме при фвухфазном КЗ, точка КЗ К2

  • 3026. Электрические системы и сети
    Контрольная работа пополнение в коллекции 04.12.2010

    УчастокP, МВтQ, Мварсеч, мм2r0, Ом/кмx0, Ом/кмL, кмR, ОмX, Ом?U, %?P, МВтА-ТЭЦ30,8545,2232400,1180,435192,2428,2650,2320,045ТЭЦ-652,85413,2082400,1180,435161,8886,960,3960,1166-126,6546,3552400,1180,435202,368,70,2440,0371-522,0545,5982400,1180,435688,02429,580,7080,0865-24,4540,9592400,1180,43511613,68850,460,2260,0062-37,5461,1052400,1180,435424,95618,270,1550,0063-428,6466,4592400,1180,435283,30412,180,3580,0594-В55,04613,5051850,1590,413526,13622,621,3290,407

  • 3027. Электрические токи в человеке
    Информация пополнение в коллекции 12.01.2009

    В случае, когда человек оказывается вблизи упав
    шего на землю провода, находящегося под напря
    жением, возникает опасность поражения шаговым
    напряжением. Напряжение шага это напряже
    ние между двумя точками цепи тока, находящими
    ся одна от другой на расстоянии шага, на которых
    одновременно стоит человек. Такую цепь создает ра
    стекающийся по земле от провода ток. Оказавшись
    в зоне растекания тока, человек должен соединить
    ноги вместе и не спеша выходить из опасной зоны
    так, чтобы при передвижении ступня одной ноги не
    выходила полностью за ступню другой. При случай
    ном падении можно коснуться земли руками, чем
    увеличить разность потенциалов и опасность поражения.

  • 3028. Электрические цепи постоянного и переменного тока
    Контрольная работа пополнение в коллекции 19.05.2010

    Далее строится общую ВАХ цепи с учетом схемы соединения элементов. В нашей цепи соединение элементов смешанное. Поэтому графически "сворачиваем" цепь. Начнем с элемента I1=f(U1) (нэ1), он подсоединен параллельно цепи и его ВАХ будет таким же, как и при дано. Далее делаем характеристики линейного элемента I3=f(U3) и нелинейного элемента (нэ2) I2=f(U2), которые соединены между собой последовательно. Строим для них общую ВАХ. В данном случае задаемся током и складываем напряжения. Проделываем это многократно. По полученным точкам строим общую ВАХ цепи I23=f(U23). Затем строим ВАХ нелинейного элемента I1=f(U1) и I23=f(U23), они подсоединены в цепи параллельно, значит, их ток будет равен сумме токов I1=f(U1) и I23=f(U23), значит складываем на графике их общий ток I=f(U).

  • 3029. Электрические явления
    Информация пополнение в коллекции 20.11.2010

    Р. Милликен: «...При помощи обыкновенного распылителя в камеру С впускалась струя масла. Воздух, посредством которого вдувалась струя, освобождался сперва от пыли путем пропускания через трубку со стеклянной ватой. Капельки масла, составлявшие струю, были весьма малы; радиус большинства их был порядка 0,001 мм. Эти капельки медленно падали в камере С, иногда некоторые из них проходили сквозь маленькое отверстие р в центре круглой латунной пластинки М диаметром в 22 см, состав-лявшей одну из пластин воздушного конденсатора. Другая пластина Nбыла укреплена на 16 мм ниже при помощи трех эбонитовых стоек а. Пластины эти могли заряжаться (одна положительно, а другая отрицательно) при помощи переключателя 5, соединявшего их с полюсами 10 000-вольтовой аккумуляторной батареи В. Капельки масла, появлявшиеся вблизи р, освещались сильным пучком света, проходившего сквозь два окошечка, расположенных в эбонитовом кольце одно против другого. Если смотреть через третье окошечко О, направленное к читателю, капля представляется яркой звездочкой на темном фоне. Капли, проходившие через отверстие р, оказывались обыкновенно сильно заряженными вследствие трения при вдувании струи...

  • 3030. Электрические явления в природе: молния
    Доклад пополнение в коллекции 11.01.2011

    Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках внутриоблачные молнии, а могут ударять в землю наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.

  • 3031. Электрический генератор
    Информация пополнение в коллекции 25.06.2010
  • 3032. Электрический заряд
    Информация пополнение в коллекции 09.07.2010
  • 3033. Электрический преобразователь давления
    Контрольная работа пополнение в коллекции 15.01.2010

    Работа прибора основана на принципе силовой компенсации. Магнитный поток возникающий в магнитопроводе 9 при прохождения входного сигнала по катушкам электромагнита полярного типа, развивает на якоре 8 усилие, прямопропорционального сигнала изменяется зазор между соплом 2 и заслонкой 3 укреплённой на рычаге 6, при этом изменяется давление в линии сопла, которое поступает на пневматическое реле 1, где усиливается и подаётся на вход преобразователя. Одновременно изменяется давление, подводимым к сильфонам положительно 7 и отрицательной 4 обратных связей.

  • 3034. Электрический привод
    Контрольная работа пополнение в коллекции 07.04.2012

    Рассчитать мощность приводного двигателя лебедки с грузоподъемностью и режимом работы, заданными в таблице вариантов. Лебедка состоит из редуктора с передаточным отношением Iр и барабана для намотки троса диаметром Дшк = 0,5 м. Заданная линейная скорость подъема груза составляет Vл = 0,25 м/c. Двигатель выбирать из серии крановых электродвигателей с фазным ротором типа MTF и MTH. Предусмотреть мероприятия по обеспечению заданной скорости подъема груза, для чего необходимо рассчитать дополнительные сопротивления в цепи ротора двигателя.

  • 3035. Электрический привод
    Контрольная работа пополнение в коллекции 27.12.2011

    Если необходимо остановить двигатель смесителя кормов, нажимается кнопка SB2. Размыкается цепь катушки магнитного пускателя. Он отпускает, разрывается цепь питания двигателя, он останавливается. При возникновении коротких замыканий в схеме срабатывает электромагнитный расцепитель автоматического выключателя и размыкает его контакты или перегорают предохранители FU1 - FU3. От перегрузок защищает тепловой расцепитель автоматического выключателя (если он предусмотрен в данной модификации) или тепловое реле КК1. Время срабатывания данных защит находится в пределах десятков секунд. При срабатывании теплового реле размыкается его контакт в цепи управления двигателем, что приводит к обесточиванию катушки магнитного выключателя и отключению двигателя. Также тепловое реле способно защитить двигатель при перегорании одной или двух плавких вставок. При этом в оставшейся фазе будут протекать повышенные токи, от которых и происходит срабатывание защиты.

  • 3036. Электрический привод производственного механизма
    Дипломная работа пополнение в коллекции 11.08.2011

    Электропривод является преобразователем электрической энергии в механическую. Кроме функции преобразования энергии, на электропривод возлагается важная функция управления технологическим процессом приводимого в движение механизма. Электропривод органически сливается с приводимым в движение исполнительным механизмом в единую электромеханическую систему, от физических свойств которой зависят производительность, динамические нагрузки, точность выполнения технологических операций и ряд других очень важных факторов. Открываются широкие возможности для формирования путем воздействия на систему управления электроприводом заданных законов движения рабочих органов машин, осуществления связанного автоматического управления взаимодействующими в технологическом процессе механизмами, оптимизации их работы по тем или иным критериям.

  • 3037. Электрический расчет бытовых электроприборов
    Контрольная работа пополнение в коллекции 10.12.2009

    10. Как устроен проточный водонагреватель? В проточных водонагревателях резервуара нет, и вода, проходя сквозь бойлер, нагревается практически сразу. Большинство электрических проточных водонагревателей оснащено системой автоматического включения при начале водозабора. Проточные ВЭН могут быть косвенного и прямого нагрева, т.е.с нагревательным элементом или с электродами. НЭ - могут быть трубчатыми или спиральными. Проточные ВЭН с электродами применяются редко. Максимальная температура нагрева обычно не превышает 85оС. В случае изменения расхода горячей воды с целью поддержания постоянства tзад необходимо регулировать мощность НЭ. (См. рис.). Регулирование Рнэ осуществляется изменением напряжения на клеммах НЭ. Естественный коэффициент мощности (cos ?) проточного ВЭНа зависит от рода оборудования, используемого для регулирования Рнэ и имеет следующие значения:-трансформатор или автотрансформатор со ступенчатым регулированием напряжения cos ?=0,95÷0,98.-тиристорный регулятор напряжения с фазным управлением cos ?=0,7÷0,9.-при использовании контактора или тиристорного РН с ШИУ или питания НЭ непосредственно от сети cos ?=0,99÷1,0.

    1. Каков КПД проточного водонагревателя? Более 85%
    2. В каких случаях используют 3-х фазную сеть для подключения водонагревателя? Для 3-х фазных водонагревателей.
    3. Как устроен жарочный шкаф? Его назначение? Жарочные шкафы, или духовки, используют для приготовления пищи. Они бывают стационарного и переносного исполнения. Жарочный шкаф служит для обжаривания мяса, рыбы, овощей, приготовления котлет и т.д. В состав шкафа входят несколько отдельных секций (2,3,4), в каждой из которых находится противень (либо стальной, либо чугунный).Нагревательные элементы, как правило трубчатые, расположены попарно в нижней части каждой секции. Самым простым агрегатом является электрическая переносная духовка. Она состоит из внутреннего и наружного корпусов, между которыми имеется теплоизоляция из листового асбеста. На верхней и нижней стенках внутреннего корпуса уложены нагревательные элементы, которые представляют собой спирали из нихромовой проволоки с надетыми на них фарфоровыми бусами. Мощность каждого элемента составляет 475 Вт, сопротивление 25 Ом. Элементы соединены последовательно. В верхней стенке внутреннего корпуса сделаны отверстия для лучшего обогревания духовки. Наружный корпус состоит из кожуха, передней и задней стенок.
    4. Как происходит управление мощностью НЭ в жарочном шкафу? Например, с помощью пакетных переключателей: для включения, выключения и переключения нагревательных элементов шкафа на различные степени мощности. Или в нижней части шкафа находится отсек оборудования, где размещены переключатели мощности (типа ПКУ-25), терморегуляторы ТК-32 (ТК-52) и сигнальные лампы типа ТЛ3-3-2.ПКУ-25 имеет 4 положения 0-II-III.I пол. Рmin.II пол. 0,5Рн.III пол. Рном.Позиционное регулирование температуры в секции осуществляется с помощью ТК-32 (t=0÷330оС).Температура обжаривания (t2=180÷300оС) выбирается ручкой ТК-32.
    5. Какова конструкция бытового тепловентилятора?
  • 3038. Электрический расчет и автоматизация электротермической установки
    Дипломная работа пополнение в коллекции 24.04.2010

    Вид электротермического оборудованияОсновные области примененияПримеры оборудованияЭлектропечи (электротермические устройства сопротивления)Нагрев воздуха, воды, почвы, сушка и тепловая обработка с/х материалов и кормов, приготовление пищиЭлектрокалориферные установки, электропечи, электроводонагреватели, котлы, установки для сушки и активного вентилирования зерна, сена, бытовые электронагревательные приборы, электропечи сопротивления ремонтного производства: нагревательные, плавильные, соляные, щелочные, масляные ванныДуговые электропечиЭлектросварка, резка, наплавка металловСварочные трансформаторы сварочные выпрямители, сварочные генераторыИндукционные электропечиПоверхностная закалка металлических деталей, нагрев под термообработку и пластическую деформацию (ковка, штамповка), косвенный нагрев воды (индукционный нагрев воды), обогрев трубопроводовИндукционные закалочные и нагревательные установки средней и высокой частоты: средняя- 20 кГц, высокая- 66 кГц и выше, индукционные водонагреватели промышленной частотыДиэлектрические электропечиНагрев диэлектриков и полупроводников, комбинированная высокочастотно- конвективная сушка, стерилизация продуктов, приготовление пищиУстановки диэлектрического нагрева: пресс порошков, резин, дерева, консервной продукции, сушилки семян селикционных центров, СВЧ печи для приготовления пищиЭлектронно- лучевые печиТермообработка, плавка, сварка тугоплавких (вольфрам tпл= 3600 С) и химически активных металлов в вакуумеЭлектронные плавилрные, нагревательные и сварочные установкиЛазерные электропечиРезка, сварка, поверхностная обработка (закалка) металлов, нанесение покрытий, предпосевная обработка семян, селекционные работыУстановки лазерной технологии в машиностроении и ремонтном производстве, установки предпосевной и селекционной обработки семянИонные электропечиХимикотермическая обработка металловУстановки ионно- плазменного азотирования, цементация поверхностного покрытия металловПлазменные электропечиПлавка, резка, термообработка металлов и сплавовДуговые и высокочастотные плазмотроныЭлектропечи инфракрасного нагрева (эл.нагрев ИК- облучения при условии, что спектральные ИК характеристики излучателя соответствуют поглощательным характеристикам установокМестный обогрев молодняка животных и птицы, сушка материалов и с/х продуктов, приготовление пищи, обработка кормов и семянУстановки ИК обогрева животных и птицы, сушилки фруктов, пастеризаторы молока,термоэлектрические устройстваТермоэлектрические устройства, нагрев сред теплотой «переносимой» от источника, имеющего температуру более высокую, чем температура потребителяОбогрев воздухаТермоэлектрические (полупроводниковые) установки, тепловые насосы, теплохолодильное оборудование1. Материалы, применяемые при изготовлении электрокалорифера и проточного электроводонагревателя

  • 3039. Электрический ток
    Информация пополнение в коллекции 09.12.2008

    Первый кто открыл иную возможность полу-чения электричества, не-жели с помощью электри-зации трением, был италь-янский ученый Луиджи Гальвани (1737-1798). Он был по специальности биолог, но работал в лаборатории, где прово-дились опыты с электричеством. Гальвани нблю-дал явление, которое было известно многим еще до него; оно заключалось в том, что если ножной нерв мертвой лягушки возбудить искрой от электрической машины, то начинала сокращаться вся лапка. Но однажды Гальвани заметил, что лапка пришла в движение, когда с нервом лапки соприкасался только стальной скальпель. Удивительнее всего было то , что между электрической машиной и скаль-пелем не было никакого контакта. Это поразительное открытие заставило Гальвани поставить ряд опытов для обнаружения при-чины электрического тока. Один из экспериментов был поставлен Гальвани с целью выяснить, вызывает ли такие же движения в лапке электричество молнии. Для этого Гальвани подвесил на латунных крючках несколько лягушачьих лапок в окне, закрытом железной решеткой. И он нашел, в противоположность своим ожиданиям, что сокращения лапок происходят в любое время, вне всякой зависимости от состояния погоды. Присутствие рядом электрической машины или другого источника электричества оказалось не нужным. Гальвани установил далее, что вместо железа и латуни можно использовать любые два разнородных металла, причем комбинация меди и цинка вызывала явление в наиболее отчетливом виде. Стекло, резина, смола, камень и сухое дерево вообще не давали никакого эффекта. Таким образом, возникновение тока все еще оставалось тайной. Где же появляется ток - только в тканях тела лягушки, только разнородных металлах или же в комбинации металлов и тканей? К сожалению, Гальвани пришел к заключению , что ток возникает исключительно в тканях тела лягушки. В результате его современникам понятие «животного электричества» стало казаться гораздо более реальным, чем электричества какого-либо другого происхождения.

  • 3040. Электрический ток
    Информация пополнение в коллекции 23.03.2012

    Работа и мощность электрического тока. Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т.е. позволяет выполнять электролиз и т.д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение - в вольтах, сила тока - амперах, время - в секундах. В связи с этим 1 Дж = 1В х 1А х 1 с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.