Физика

  • 2761. Ультразвук
    Доклад пополнение в коллекции 09.12.2008

    Гидролокация. В конце Первой мировой войны появилась одна из первых практических ультразвуковых систем, предназначенная для обнаружения подводных лодок. Пучок ультразвукового излучения может быть сделан остро направленным, и по отраженному от цели сигналу (эхо-сигналу) можно определить направление на эту цель. Измеряя время прохождения сигнала до цели и обратно, определяют расстояние до нее. К настоящему времени система, именуемая гидролокатором, или сонаром, стала неотъемлемым средством мореплавания. Если направить импульсное ультразвуковое излучение в сторону дна и измерить время между посылом импульса и его возвратом, можно определить расстояние между излучателем и приемником (), т.е. глубину. Основанные на этом сложные системы автоматической регистрации применяются для составления карт дна морей и океанов, а также русел рек. Соответствующие навигационные системы атомных подводных лодок позволяют им совершать безопасные переходы даже под полярными льдами.

  • 2762. Ультразвук и его применение
    Информация пополнение в коллекции 09.12.2008

    Важнейшим нелинейным эффектом в УЗ-вом поле является кавитация возникновение в жидкости массы пульсирующих пузырьков, заполненных паром, газом или их смесью. Сложное движение пузырьков, их схлопывание, слияние друг с другом и т.д. порождают в жидкости импульсы сжатия (микроударные волны) и микропотоки, вызывают локальное нагревание среды, ионизацию. Эти эффекты оказывают влияние на вещество: происходит разрушение находящихся в жидкости твердых тел (кавитационная эрозия), возникает перемешивание жидкости, инициируются или ускоряются различные физические и химические процессы. Изменяя условия протекания кавитации, можно усиливать или ослаблять различные кавитационные эффекты, например с ростом частоты УЗ увеличивается роль микропотоков и уменьшается кавитационная эрозия, с увеличением давления в жидкости возрастает роль микроударных воздействий. Увеличение частоты приводит к повышению порогового значения интенсивности, соответствующей началу кавитации, которое зависит от рода жидкости, ее газосодержания, температуры и т.д.. Для воды при атмосферном давлении оно обычно составляет 0,31,0 Вт/см2. Кавитация сложный комплекс явлений. УЗ-вые волны, распространяющиеся в жидкости, образуют чередующиеся области высоких и низких давлений, создающих зоны высоких сжатий и зоны разрежений. В разреженной зоне гидростатическое давление понижается до такой степени, что силы, действующие на молекулы жидкости, становятся больше сил межмолекулярного сцепления. В результате резкого изменения гидростатического равновесия жидкость «разрывается», образуя многочисленные мельчайшие пузырьки газов и паров. В следующий момент, когда в жидкости наступает период высокого давления, образовавшиеся ранее пузырьки схлопываются. Процесс схлопывания пузырьков сопровождается образованием ударных волн с очень большим местным мгновенным давлением, достигающим нескольких сотен атмосфер.

  • 2763. Ультрафиолетовое излучение
    Доклад пополнение в коллекции 09.12.2008

    Ó÷åíûå ðàçðàáîòàëè òåõíîëîãèþ, ïîçâîëÿþùóþ îáíàðóæèâàòü ìàëåéøèå äîçû âçðûâ÷àòûõ âåùåñòâ.  ïðèáîðå äëÿ îáíàðóæåíèÿ ñëåäîâ âçðûâ÷àòûõ âåùåñòâ èñïîëüçóåòñÿ òîí÷àéøàÿ íèòü (îíà â äâå òûñÿ÷è ðàç òîíüøå ÷åëîâå÷åñêîãî âîëîñà), êîòîðàÿ ñâåòèòñÿ ïîä âîçäåéñòâèåì óëüòðàôèîëåòîâîãî èçëó÷åíèÿ, íî âñÿêèé êîíòàêò ñî âçðûâ÷àòêîé: òðèíèòðîòîëóîëîì èëè èíûìè èñïîëüçóåìûìè â áîìáàõ âçðûâ÷àòûìè âåùåñòâàìè, ïðåêðàùàåò åå ñâå÷åíèå. Ïðèáîð îïðåäåëÿåò íàëè÷èå âçðûâ÷àòûõ âåùåñòâ â âîçäóõå, â âîäå, íà òêàíè è íà êîæå ïîäîçðåâàåìûõ â ïðåñòóïëåíèè

  • 2764. Універсальні осцилографи
    Информация пополнение в коллекции 08.12.2009

    Аналогові осцилографи. Прибори цього типу вважаються класичними представниками загального поняття про осцилограф, як контрольно-вимірювальних приладів. В цілому, будь-який аналоговий осцилограф складається з наступних складових: вхідний дільник, підсилювач вертикального відхилення, схема синхронізації і горизонтального відхилення, джерело живлення та електронно-променева трубка. У осцилографах застосовують електронно-променеві трубки з електростатичним відхиленням, на відміну від телевізорів і моніторів, де використовується магнітне відхилення. Електронно-променеві трубки з електростатичним відхиленням, хоча й більш складні у виготовленні, мають значно більший частотний діапазон. В кожний конкретний момент відхилення електронного променя та світлової плями на екрані, що він утворює, пропорційно напрузі, що додається до пластинам вертикального відхилення. Напруга на пластинах горизонтального відхилення змінюється лінійно, забезпечуючи горизонтальну розгорнення. Нижня частота, при якій картинка ще читається, складає в середньому 10 Гц, хоча при застосуванні спеціальних електронно-променевих трубок з великим часом після підсвічення вона може бути значно нижче. Верхня робоча частота визначається в основному характеристиками підсилювача вертикального відхилення і ємністю між відхиляючими пластинами. В останнім часом цифрові осцилографи, які мають великий ряд переваг, витісняють аналогові прилади з світового ринку, але все-таки традиційні аналогові осцилографи реального часу не зникають повністю, в першу чергу з-за низької вартості в порівнянні з цифровими осцилографа. Плюс до цього з розвитком елементної бази аналогові осцилографи придбали ряд важливих додаткових функцій і можливостей, наприклад, надзвичайно що полегшують роботу курсори з цифровим відліком величин (напруги і часу) і дуже зручний цифрове управління. За допомогою вхідного мультиплексора для декількох каналів можна досить просто організувати єдину розгортку на однопроменевій трубці з відображенням декількох сигналов. Цифрові запам'ятовуючі осцилографи в порівнянні з аналоговими попередниками вони мають більш широкі можливості, а завдяки зниженню вартості цифрових схем з кожним роком вони стають більш доступними потенційним покупцям. У загальному вигляді цифровий осцилограф складається з вхідного дільника, і нормалізуючого підсилювача, аналого-цифрового перетворювача, блоку пам'яті, пристрої управління та пристрої відображення. Пристрій відображення зазвичай виконується на основі рідкокристалічною панелі (див. Рис.4)

  • 2765. Управление системами электроснабжения
    Курсовой проект пополнение в коллекции 08.01.2011

    Для защиты Т3-Т4 от внешних КЗ и защиты от однофазных КЗ в обмотке и на выводах НН применили простую МТЗ с выдержкой времени 1 с Iс.з=255 А (кривая 3), и МТЗ нулевой последовательности с выдержкой времени 0,5 с Iс.з=2400 А (кривая 3)

    1. Для защиты W3 и W2 от междуфазных КЗ применили МТЗ и рассчитали Iс.з=3482 А (кривая 4, выдержкой времени 0,6 с) и Iс.з=6641 А (кривая 5, выдержкой времени 1,1 с)
    2. Для защиты Т1 от внешних КЗ использовали МТЗ (Iс.з=240 А) с выдержкой времени 1,6 с (кривая 6); Для защиты Т1 от междуфазных КЗ использовали дифференциальную защиту Iс.з=2262 А (кривая 6).
  • 2766. Управление энергосбережением в Республике Беларусь
    Информация пополнение в коллекции 23.02.2011

    К основным техническим приоритетам деятельности до 2005 г. в области энергосбережения относятся:

    • повышение эффективности работы генерирующих источников за счет изменения структуры генерирующих мощностей в сторону расширения внедрения парогазовых и газотурбинных технологий, увеличения выработки электроэнергии на тепловом потреблении, преобразования котельных в мини-ТЭЦ, оптимизации режимов работы энергоисточников и оптимального распределения нагрузок энергосистемы;
    • модернизация и повышение эффективности работы котельных за счет перевода паровых котлов в водогрейный режим, модернизации тепловой изоляции на всех элементах и оборудовании котельных и тепловых сетей; отбора дутьевого воздуха с верхней части здания котельных; установки экономайзеров и других теплообменников для утилизации ВЭР; оснащения котлов автоматикой контроля процессов сжигания и регулирования, либо производственного контроля (мониторинга) топочного режима котлов на базе портативных измерителей тепловых потерь в увязке с режимами потребления тепловой энергии, установки аккумуляторов теплоты и др.;
    • внедрение котельного оборудования, работающего на горючих отходах производства, сельского и лесного хозяйства, деревообработки;
    • снижение потерь и технологического расхода энергоресурсов при транспортировке тепловой и электрической энергии, природного газа, нефти и нефтепродуктов за счет снижения расходов на собственные нужды обслуживаемых подразделений, технического перевооружения и оптимизации режимов загрузки электрических сетей и трансформаторных подстанций, тепловых сетей и тепловых пунктов; компрессорных станций на газопроводах, насосных в тепловых сетях, на нефте- и продуктопроводах с внедрением регулируемого электропривода;
    • создание мини-ТЭЦ на базе ПГУ и ГТУ на компрессорных станциях газопроводов;
    • создание технических условий (объединение тепловых сетей, строительство перемычек, аккумуляторов теплоты и т.п.) для максимальной передачи нагрузок от котельных любых ведомств на ТЭЦ со стоимостью тепловой энергии для владельцев котельных на уровне ее себестоимости на ТЭЦ;
    • наладка и автоматическое регулирование гидравлических и тепловых режимов тепловых сетей (перерасчет и шайбирование, замена сетевых насосов, регулировка и т.п.);
    • замена отопительных электрокотельных на топливные котлы (преимущественно на местных видах, горючих отходах), а также перевод всевозможных электросушильных установок и нагревательных печей (где это целесообразно) на топливоиспользующие установки;
    • внедрение автоматических систем регулирования потребления энергоносителей в системах отопления, освещения, горячего и холодного водоснабжения и вентиляции жилых, общественных и производственных помещений, в технологических установках всех типов;
    • разработка и внедрение новых энергосберегающих технологий при нагреве, термообработке, сушке изделий, новых строительных и изоляционных материалов с улучшенными теплофизическими характеристиками и, в частности, спецдобавок при производстве железобетонных изделий; энерготехнологических комплексов при производстве цемента, стекла, кирпича, переработке нефти, на предприятиях химической и пищевой промышленности и т.п.;
    • дальнейшее развитие системы учета всех видов энергоносителей, включая учет их расхода на отопление жилых помещений, а также внедрение многотарифных счетчиков энергии;
    • максимальная утилизация тепловых вторичных энергоресурсов (горячей воды, конденсата, дымовых газов, вентвыбросов, канализационных стоков) в технологических процессах, системах отопления и горячего водоснабжения промышленных узлов и отдельных городов и населенных пунктов;
    • разработка и внедрение эффективных биогазовых установок для производства горючих газов и удобрений из отходов животноводства, растениеводства, специально выращиваемой биомассы;
    • разработка и внедрение технологии использования бытовых отходов и мусора для топливных целей;
    • внедрение теплонасосных установок на промышленных предприятиях в централизованных и индивидуальных системах отопления;
    • экономически целесообразное внедрение ветро-, гелио- и других нетрадиционных источников энергии;
    • техническое перевооружение автомобильного транспорта и тракторов, включая перевод на дизельное топливо, сжиженный и сжатый природный газ, разработка и внедрение экономичных двигателей, совершенной системы диагностики и регулирования, оптимальных режимов эксплуатации;
    • разработка и внедрение технологии получения топлива для дизельных установок из метанола и рапсового технического масла;
    • разработка, организация производства и внедрение энергосберегающего оборудования, приборов, материалов;
    • децентрализация систем энергообеспечения потребителей теплом, топливом, сжатым воздухом с малыми нагрузками и резкопеременными режимами работы;
    • максимальное снижение энергозатрат в жилищно-коммунальном хозяйстве путем внедрения регулируемых систем отопления, вентиляции, горячего водоснабжения, освещения и утилизации тепла вентвыбросов, сточных вод, использования энергоэффективных строительных материалов, конструкций, гелиоподогревателей.
  • 2767. Управляемый выпрямитель для электродвигателя постоянного тока тиристорного электропривода. Преобразователь частоты с автономным инвертором для электропитания асинхронного двигателя
    Курсовой проект пополнение в коллекции 03.11.2009

    Работает электропривод следующим образом. При подаче силового напряжения 380В на вход выпрямителя UZ в звене постоянного тока происходит процесс заряда конденсатора фильтра C0, который определяется величинами L0, C0. Одновременно с этим в информационную часть схемы подается питание (напряжения U1 U8). В процессе выдержки времени на установление напряжений стабилизированных источников питания U1 U4 аппаратная защита FA блокирует открывание ключей инвертора и происходит запуск программы управления процессором по аппаратно-формируемой команде "Рестарт". Выполняется предустановка ряда ячеек ОЗУ процессора (установка начальных условий), определяется способ управления "Местное/Дистанционное", "по умолчанию" устанавливается режим работы "Подача" (Q). Если с датчиков тока фаз двигателя ТАА ТАС, аппаратной защиты FA, напряжения сети Uс поступает информация о нормальных параметрах, то привод готов к работе, на цифровой индикатор выводятся нули, светится светодиод "Подача". В противном случае загорается светодиод "Авария" и на цифровом индикаторе появляется код срабатывания той или иной защиты.

  • 2768. Управляемый термоядерный синтез
    Курсовой проект пополнение в коллекции 27.07.2010

    Критерий Лоусона. Применение законов сохранения энергии и числа частиц позволяет выяснить некоторые предъявляемые к реактору синтеза общие требования, не зависящие от каких-либо особенностей технологического или конструктивного характера рассматриваемой системы. Установка произвольной конструкции содержит чистую водородную плазму с плотностью п при температуре Т. В реактор вводится топливо, например равнокомпонентная смесь дейтерия и трития, уже нагретая до необходимой температуры. Внутри реактора инжектируемые частицы время от времени сталкиваются между собой и происходит их ядерное взаимодействие. Это полезный процесс; одновременно, однако, из реактора уходит энергия за счёт электромагнитного излучения плазмы и из рабочей зоны ускользает некоторая доля "горячих" (обладающих высокой энергией) частиц, которые не успели испытать ядерные взаимодействия. Пусть t среднее время удержания частиц в реакторе; смысл величины t таков: за время в 1 сек из 1 см3 плазмы в среднем уходит n/t частиц каждого знака. В стационарном режиме в реактор надо ежесекундно инжектировать такое же число частиц (в расчёте на единицу объёма). Для покрытия энергетических потерь подводимое топливо должно подаваться в зону реакции с энергией, превышающей энергию потока ускользающих частиц. Эта дополнительная энергия должна компенсироваться за счёт энергии синтеза, выделяющейся в зоне реакции, а также за счёт частичной рекуперации в стенках и оболочке реактора электромагнитного излучения и корпускулярных потоков. Примем для простоты, что коэффициент преобразования в электрическую энергию продуктов ядерных реакций, электромагнитного излучения и частиц с тепловой энергией одинаков и равен h. Величину (часто называют коэффициент полезного действия (кпд). В условиях стационарной работы системы и при нулевой полезной мощности уравнение баланса энергии в реакторе имеет вид: h(Po + Pr + Pt) = Pr + Pt, (1) где Po мощность ядерного энерговыделения, Pr мощность потока излучения и Pt энергетическая мощность потока ускользающих частиц. Когда левая часть написанного равенства делается больше правой, реактор перестаёт расходовать энергию и начинает работать как термоядерная электростанция. При написании равенства (1) предполагается, что вся рекуперированная энергия без потерь возвращается в реактор через инжектор вместе с потоком подводимого нагретого топлива. Величины Ро, Pr и Pt известным образом зависят от температуры плазмы, и из уравнения баланса легко вычисляется произведение nt = f (T), (2) где f (T) для заданного значения кпд h и выбранного сорта топлива есть вполне определённая функция температуры. На рис. 2 приведены графики f (T) для двух значений h и для обеих ядерных реакций. Если величины h, достигнутые в данной установке, расположатся выше кривой f (T), это будет означать, что система работает как генератор энергии. При h =1/3 энергетически выгодная работа реактора в оптимальном режиме (минимум на кривых рис. 2) отвечает условию ("критерии Лоусона"): реакции (d, d): nt >1015см-3·сек; Т ~ 109 К; (3) реакции (d, t): nt > 0,5·1015см-3·сек, Т ~ 2·108 К. Т.о., даже в оптимальных условиях, для наиболее интересного случая реактора, работающего на равнокомпонентной смеси дейтерия и трития, и при весьма оптимистических предположениях относительно величины (необходимо достижение температур ~ 2·108 К. При этом для плазмы с плотностью ~ 1014см-3 должны быть обеспечены времена удержания порядка секунд.

  • 2769. Упругие волны
    Информация пополнение в коллекции 12.01.2009

    На рис. 1.1 показано движение частиц при распространении в среде поперечной волны. Номерами 1, 2 и т. д. обозначены частицы, отстоящие друг от друга на расстояние, равное ¼ ?T, т. е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. По прошествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнет смещаться вверх из положения равновесия. В момент времени, равный Т, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как и в начальный момент. Волна к моменту времени Т, пройдя путь ?T, достигнет частицы 5.

  • 2770. Упругий и неупругий удар двух однородных шаров
    Информация пополнение в коллекции 12.01.2009

    Абсолютно неупругим называют такой удар, после которого скорости обоих соударяющихся тел оказываются одинаковыми. Чтобы это стало возможным, соударяющиеся тела должны обладать такими свойствами, что силы, возникающие при их деформации, зависят не от величины деформации, а от скорости изменения деформации. Такие свойства присущи, например, мягкой глине, пластилину. При неупругом соударении происходит следующее. В начальный момент удара скорость деформации велика (шары сжимаются), поэтому возникают значительные силы, сообщающие обоим шарам ускорения, направленные в противоположные стороны. По мере развития удара скорости деформации шаров уменьшаются, а сами деформации увеличиваются до тех пор, пока скорости шаров не окажутся равными. В этот момент деформации шаров перестанут изменяться, исчезнут силы, и оба шара будут двигаться с одинаковой скоростью. При абсолютно неупругом ударе выполняются законы сохранения импульса и полной энергии. Механическая же энергия тел до удара больше механической энергии после удара, так как она частично (или полностью) переходит во внутреннюю энергию тел и расходуется на работу по деформации тел. Для определения скорости тел после взаимодействия рассмотрим удар двух шаров (материальных точек), образующих замкнутую систему. Массы шаров m1 и m2, скорости до удара V1i и V2i. Согласно закону сохранения суммарный импульс шаров до удара должен быть таким же, как после удара:

  • 2771. Уравнение Бернулли
    Реферат пополнение в коллекции 19.07.2010
  • 2772. Уравнение равновесия. Проекция скорости точки
    Контрольная работа пополнение в коллекции 08.11.2010

    По заданному графику проекции скорости точки, движущейся прямолинейно, построить графики ее перемещения и ускорения. Какой путь прошла точка? На каком максимальном расстоянии от исходного положения она находилась в процессе движения? На каком расстоянии от исходного положения она находится в конце движения?

  • 2773. Уравнение состояния
    Методическое пособие пополнение в коллекции 27.11.2010

    В формулах (7 10) если (е = 0; S = 0), то они преобразуются в формулу для сухого воздуха. Если по формулам (9) и (10) рассчитать ?вв , то ?вв на 10 грамм на м3 будет меньше ?св. Сухой воздух чуть-чуть тяжелее влажного поэтому ?вв учитывают только при точных расчётах. Например:

  • 2774. Уравнения Больцмана, Лиувилля, Боголюбова
    Информация пополнение в коллекции 18.01.2011

    Заметим, наконец, что в определение n-частичных функций Fn(x1, ..., хN, t), так же как и в определение FiN) (х1, ..., xN, t), вероятностный смысл был нами вложен «насильственно», и мы по существу получили систему уравнений (7), полностью эквивалентную уравнению Лиувилля, совершенно не связывая функции Fn с вероятностными характеристиками единичной системы. Отсюда следует, что система уравнений (7) есть система механических, а не статистических уравнений. Неудивительно поэтому, что эта система, так же как и уравнение Лиувилля, инвариантна по отношению к отражению времени замене и не может описывать необратимые макроскопические процессы. Необратимость вносится в формализм теории только определенными гипотезами сугубо вероятностного характера. Запишем в явном виде уравнения для F1 и F2, которыми нам придется заниматься более детально; при этом мы отбросим в множителе (N n)/V, входящем в (7) слагаемое n=1, 2:

  • 2775. Уравнения Максвелла. Граничные условия
    Информация пополнение в коллекции 09.12.2008

    Система уравнений, состоящая из уравнений Максвелла для электромагнитного поля и уравнений Ньютона для частиц, представляет собой единую систему уравнений, описывающую все явления, обусловленные электромагнитным взаимодействием (без учёта релятивистских и квантовых эффектов). Поэтому, строго говоря, их необходимо решать совместно в задачах электродинамики. Однако в такой наиболее общей постановке решать задачи о взаимодействии электромагнитного поля с веществом чрезвычайно трудно. Сложность проблемы заключается в том, что вещество состоит из громадного количества частиц, движение которых каждой в отдельности невозможно описать. С такой проблемой сталкиваются в классической механике при попытках описать механическое движение газов, жидкостей и твёрдых тел. Чтобы обойти эту трудность физикам приходилось строить определённые модели механических систем: модель абсолютно твёрдого тела, модель сплошной среды и др. При изучении взаимодействия заряженных частиц с электромагнитным полем также приходится вводить некоторые модели. Одной из таких широко употребляемых, является модель сплошной среды, состоящая из электрических диполей (диэлектрик). Эта модель электрического диполя играет очень важную роль в физике, так как атомы и молекулы представляют собой системы заряженных частиц, которые в целом нейтральны, но могут обладать отличным от нуля дипольным моментом и поэтому создавать электрическое поле.

  • 2776. Уран (элемент)
    Информация пополнение в коллекции 26.01.2010

    «Волнистая» урановая структура делает слиток непрочным. Атомы отдельных слоев связаны между собой довольно надежно, зато связь между слоями заметно слабее; поэтому при комнатной температуре уран очень хрупок. Упрочить металл можно, сохранив высокотемпературную кубическую решетку. Такую решетку имеет сплав урана с молибденом. Именно поэтому молибден стал главным легирующим элементом в производстве металлического урана. Молибден придает урану и другое полезное качество. Как правило, в мощных реакторах на тепловых нейтронах (а именно такие реакторы распространены в наше время) топливные элементы охлаждают водой. При малейшем нарушении защитной оболочки блок из чистого урана под угрозой: уран разлагает воду, свободный водород вступает в реакцию образуется гидрид урана H3U. Этот порошок осыпается и уносится водяным потоком твэл разрушается. Картина совсем иная, если вместо чистого урана применен ураномолибденовый сплав. Такие сплавы устойчивы к действию воды и служат великолепным материалом для главных урановых изделий твэлов атомных реакторов.

  • 2777. Усиление надёжности схемы электроснабжения ПС "Северная"
    Дипломная работа пополнение в коллекции 11.09.2010

     

    1. Справочник по проектированию электрических систем. / Под редакцией С.С. Рокотяна и И.М. Шапиро. - М.: Энергия, 1971. - 248 с.;
    2. Рожкова Л.Д., Козулин B.C. Электрооборудование станций и подстанций. - М.: Энергия, 1980. - 599 с.;
    3. Справочник по проектированию электроснабжения/ Под редакцией Ю.Г. Барыбина, JI.E. Фёдорова, М.Г. Зименкова, А.Г. Смирнова. - М.: Энергоатомиздат, 1990. - 576 с.;
    4. Heклeпaeв Б.Н. Электрическая часть электростанций и подстанций. - М.: Энергоатомиздат, 1986. - 640 с.;
    5. Фоков К.И. Электрическая часть станций и подстанций. Методические указания на выполнение курсового проекта. Хабаровск: ДВГАПС 1996. - 37 с.;
    6. Коновалова Л.Л., Рожкова Л.Д. Электроснабжение промышленных предприятий, и установок. - М.: Энергоатомиздат, 1989. - 528 с.;
    7. Правила технической эксплуатации электрических станций и сетей Российской Федерации: РД 34.20.501-95/ Минтопэнерго РФ, РАО "ЕЭС России". - М.: СПО ОРГРЭС, 1996. - 160 с.;
    8. Рекламно-информационные материалы заводов-изготовителей, 1999.;
    9. Каменев В.Н. Чтение схем и чертежей электроустановок. - М.: Высшая школа, 1990. - 144 с.;
    10. Неклепаев Б.Н., Крючков И.П. Электрическая часть станций и подстанций. Справочные материалы для курсового и дипломного проектирования: Учебное пособие для вузов- 4-ое изд. перераб. и доп. - М.: Энергоатомиздат, 1989.;
    11. ГОСТ 12.1 004-76;
    12. ГОСТ 13109-99.
  • 2778. Усилитель постоянного тока
    Курсовой проект пополнение в коллекции 29.08.2010

    Как показали расчеты и анализ работы схемы, спроектированный усилитель постоянного тока удовлетворяет требованиям технического задания. Но при практическом выполнении усилителя постоянного тока на транзисторах следует помнить, что на величину дрейфа коллекторного тока транзисторов сильно влияет технологический разброс параметров, доходящий в отдельных экземпляров транзисторов до ±100%, а также ползучесть - изменение параметров с истечением времени в результате старения транзисторов в процессе эксплуатации или хранения. Поэтому перед монтажом схемы транзисторы обязательно следует проверять на ползучесть и соответствие требуемым параметрам схемы. Транзисторы в балансных каскадах должны иметь параметры, различающиеся не более чем на 2 - 3%.

  • 2779. Усилитель постоянного тока
    Курсовой проект пополнение в коллекции 27.03.2012

    Кпу - коэффициент усиления предварительного усилителя напряжения, Кфнч - коэффициент усиления фильтра низких частот, Gутв - проводимость усилителя с токовым выходом, j(F) - функция влияния фактора F, вызывающего погрешность. В случае определения температурной погрешности F - температура. При определении погрешности от нестабильности напряжения F - относительное изменение напряжения питания. Для того, чтобы записать коэффициент передачи усилителя в условиях действия влияющего фактора каждый из входящих в функцию преобразования коэффициентов записывается с учётом его зависимости от фактора.

  • 2780. Ускорители заряженных частиц
    Информация пополнение в коллекции 09.12.2008

    Протонный циклотрон. Существует весьма элегантный и экономичный способ ускорения пучка путем многократного сообщения ему небольших порций энергии. Для этого с помощью сильного магнитного поля пучок заставляют двигаться по круговой орбите и много раз проходить один и тот же ускоряющей промежуток. Впервые этот способ был реализован в 1930 Э.Лоуренсом и С.Ливингстоном в изобретенном ими циклотроне. Как и в линейном ускорителе с дрейфовыми трубками, пучок экранируется от действия электрического поля в тот полупериод, когда оно действует замедляюще. Заряженная частица с массой m и зарядом q, движущаяся со скоростью v в магнитном поле H, направленном перпендикулярно ее скорости, описывает в этом поле окружность радиусом R = mv/qH. Поскольку ускорение приводит к увеличению скорости v, возрастает и радиус R. Таким образом, протоны и тяжелые ионы движутся по раскручивающейся спирали все возрастающего радиуса. При каждом обороте по орбите пучок проходит через зазор между дуантами высоковольтными полыми D-образными электродами, где на него действует высокочастотное электрическое поле. Лоуренс сообразил, что время между прохождениями пучка через зазор в случае нерелятивистских частиц остается постоянным, поскольку возрастание их скорости компенсируется увеличением радиуса. На протяжении той части периода обращения, когда высокочастотное поле имеет неподходящую фазу, пучок находится вне зазора. Частота обращения дается выражением