Тема «Иррациональные уравнения и неравенства» введение

Вид материалаДокументы

Содержание


1. Из истории
2. Определение иррациональных уравнений
Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данн
Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.
2х–1=0 решим уравнение 6х–3=0
Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.
3. Методы решения иррациональных уравнений.
Пример №1
Подставив значение x=-1 в уравнение (2), получим
Решить уравнение
Умножим обе части заданного уравнения на выражение
Список используемой литературы.
Подобный материал:

Тема «Иррациональные уравнения и неравенства»




ВВЕДЕНИЕ

В школьном курсе алгебры рассматриваются различные виды уравнений – линейные, квадратные, биквадратные, кубические, рациональные, с параметрами, иррациональные и другие. Данный раздел посвящен иррациональным уравнениям, методам их решения. Кроме того, в разделе введены понятия уравнений следствий и равносильных уравнений, а также приведены примеры задач, математическими моделями которых служат иррациональные уравнения. Приведенася небольшая историческая справка, посвященная введению иррациональных чисел

^

1. ИЗ ИСТОРИИ



Термин «рациональное» (число) происходит от латиноамериканского слова ratio – отношение, которое является переводом греческого слова “логос”в отличие от рациональных чисел, числа, выражающие отношение несоизмеримых величин, были названы еще в древности иррациональными, т.е. нерациональными (по-гречески “алогос”) правда, первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми, Теодор Киренский же симметричными и ассимметричными. В V-VI вв. римские авторы Капелла и Кассиодор переводили эти термины на латынь словами rationalis и irrationalis. Термин «соизмеримый» (commensurabilis) ввел в первой половине VI в. другой римский автор- Боэций.

Древнегреческие математики классической эпохи пользовались только рациональными числами (вернее целыми, дробными и положительными). В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например, корень из квадратного числа, «алогос» – невыразимое словами, а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus – глухой. В Европе термин surdus- глухой впервые появился в середине XII в. у Герарда Кремонского, известного переводчика математических прозведений с арабского на латынь, затем у итальянского математика Леонардо Фабоначчи и других европейских математиков, вплоть до XVIII в. Правда уже в XVI в. Отдельные ученые, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин считали понятие иррационального числа равноправным с понятием рационального числа. Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью.»

Еще до Бомбелли и Стевина многие ученые стран Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Более того, комментируя «Начала» Евклида и исследуя общую теорию отношения Евдокса, Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В том же направлении много было сделано крупнейшим математиком XIII в. ат-Туси.

Математики и астрономы Ближнего и Среднего Востока вслед за астрономами древнего Вавилона и эллинистической эпохи широко пользовались шестидесятеричными дробями, арифметические действия с которыми они называли «арифметикой астрономов». По аналогии с шестидесятеричными дробями самаркандский ученый XV в. ал-Каши в работе «Ключ арифметики» ввел десятичные дроби которыми он пользовался для повышения точности извлечения корней. Независимо от него по такому же пути шел открывший в 1585 г. десятичные дроби в Европе Симон Стевин, который в своих «приложениях к алгебре» (1594 г.) показал, что десятичные дроби можно использовать для бесконечно близкого приближения к действительному числу. Таким образом, уже в XVI в. зародилась идея о том, что естественным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби. Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков (и геометрических величин вообще) и необходимости расширения понятия рационального числа. На числовой оси иррациональные числа, как и рациональные, изображаются точками. Это геометрическое толкование позволило лучше понять природу иррациональных чисел и способствовало их признанию.

В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в.


^ 2. ОПРЕДЕЛЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ

    1. Равносильные уравнения. Следствия уравнений.



При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

Определение: Уравнение f(x)=g(x) равносильно уравнению f1(x)=g1(x), если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения 3x-6=0; 2х–1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

Тот факт, что уравнения f(x)=g(x) и f1(x)=g1(x) равносильны, обозначают так:

f
(x)=g(x) f1(x)=g1(x)

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.


Теорема 1: ^ Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство:
Докажем, что уравнение f(x) = g(x)+q(x) (1)
равносильно уравнению

f(x) – q(x) = g(x) (2)


Пусть х=а – корень уравнения. Значит имеет место числовое равенство f(a)=g(a)+q(a) . Но тогда по свойству действительных чисел будет выполняться и числовое равенство f(a)-q(a)=g(a) показывающее, что а – корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказатью.


Теорема 2: ^ Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.


Доказательство: докажем, что уравнение 6х–3=0 равносильно уравнению ^ 2х–1=0

решим уравнение 6х–3=0 и уравнение 2х–1=0

6х=3 2х=1

х=0,5 х=0,5

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.


Рассмотрим уравнение





ОДЗ этого уравнения {х ≠ 1, х ≠ -3}


Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е. х²+х–2=0, а знаменатель не равен 0. Решая уравнение х²+х–2=0, находим корни х1=1, х2 = –2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.



В этом случае говорят, что уравнение х²+х–2=0, есть следствие уравнения


пусть даны два уравнения:

f1 (x) = g1 (x) (3)

f2 (x) = g2 (x) (4)

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).

Э
тот факт записывают так:


В том случае, когда уравнение (3) - есть также следствие уравнения (4), эти уравнения равносильны.


^ Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение – следствие
х²+х–2=0, имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения




В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.


Итак, если при решении уравнения происходит переход к уравнению – следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения – корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения

и потому отброшен.


И
ногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения

ОДЗ которого {х -2},




п
олучим уравнение следствие х²-4=0 имеющее два корня х1 = 2, х2 = -2 корень х2 = -2 – посторонний, так как не входит в ОДЗ исходного уравнения.

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Например, уравнение (х+1)(х+3)= х+1 (5)

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим (х+1)(х+2)=0, откуда находим х1=-1, х2=-2 .

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение х+3=1, имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.


2.2. Определение иррациональных уравнений.


Иррациональными называются уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.


Например:





^ 3. МЕТОДЫ РЕШЕНИЯ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ.


3.1. Решение иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень.
^

Пример №1

Р
ешить уравнение



В
озведем обе части уравнения (1) в квадрат:


далее последовательно имеем:

5х – 16 = х² - 4х + 4

х² - 4х + 4 – 5х + 16 = 0

х² - 9х + 20 = 0





Проверка: Подставив х=5 в уравнение (1), получим – верное равенство. Подставив х= 4 в уравнение (1), получим – верное равенство. Значит оба найденных

значения – корни уравнения.


Ответ: 4; 5.


Пример №2

Решить уравнение:




(2)


Решение:


Преобразуем уравнение к виду:

и применим метод возведения в квадрат:




далее последовательно получаем.





Р
азделим обе части последнего уравнения почленно на 2:


е
ще раз применим метод возведения в квадрат:


далее находим:

9(х+2)=4–4х+х²

9х+18–4+4х-х²=0

-х²+13х+14=0

х²-13х–14=0


х1+х2 =13 х1 =19

х1 х2 = -14 х2 = -1

по теореме, обратной теореме Виета, х1=14, х2 = -1

корни уравнения х²-13х–14 =0





Проверка: подставив значение х=-14 в уравнение (2), получим–

- не верное равенство. Поэтому х = -14 – не корень уравнения (2).
^

Подставив значение x=-1 в уравнение (2), получим-

- верное равенство. Поэтому x=-1- корень уравнения (2).

Ответ: -1



3.2 Метод введения новых переменных.



^

Решить уравнение



Решение:

Конечно, можно решить это уравнение методом возведения обеих частей уравнения в одну и ту же степень. Но можно решить и другим способом – методом введения новых переменных.




Введем новую переменную Тогда получим 2y²+y–3=0 – квадратное уравнение относительно переменной y. Найдем его корни:








Т.к. , то – не корень уравнения, т.к. не




может быть отрицательным числом . А - верное равенство, значит x=1- корень уравнения.


Ответ: 1.

    1. Искусственные приёмы решения иррациональных уравнений.


Решить уравнение:




(1)


Решение:
^

Умножим обе части заданного уравнения на выражение





сопряжённое выражению




Так как




То уравнение (1) примет вид:




Или

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом известен. Тогда x1=0.Остаётся решить уравнение:



(2)


Сложив уравнения (1) и (2), придём к уравнению



(3)


Решая уравнение (3) методом возведения в квадрат, получим:





Проверка:




x1=0, x2=4, x3= -4 подставим в уравнение




1)



- не верное равенство, значит x1=0- не корень уравнения.

2)




- верное равенство, значит x2=4- корень уравнения.




3)







- не верное равенство, значит x3= -4- не корень уравнения.


Ответ: 4.


ЗАКЛЮЧЕНИЕ



Итак, уравнения, которые содержат переменную под знаком корня, называются иррациональными. Иррациональные уравнения решаются в основном возведением обеих частей уравнения в квадрат (или n-ую степень) или введением новой переменной. Кроме того, пользуются и искусственными приемами решения иррациональных уравнений.

Иррациональные неравенства








 

Если в неравенство входят функции под знаком корня, то такие неравенства называют иррациональными.












Стандартный метод решения этих неравенств заключается в возведении обеих частей неравенства в нужную степень: если в неравенство входит квадратный корень, то в квадрат; входит корень третьей степени − в куб и т. д. Однако, преобразования неравенств, возводить в квадрат, не нарушая равносильности, можно только неравенство, у которого обе части неотрицательны. При возведении же в квадрат неравенств, части которых имеют разные знаки, могут получиться неравенства, как равносильные исходному, так и неравносильные ему. Простой пример: –1 < 3 − верное неравенство, − тоже верное неравенство. Несмотря на то, что –4 < –1 − неравенство верное, неравенство уже верным не является.

Покажем, как получить равносильные системы для некоторых часто встречающихся типов неравенств.


Неравенства вида

Если x лежит в ОДЗ: f (x) ≥ 0, то левая часть неравенства существует и неотрицательна. Поскольку для всех x, являющихся решением данного неравенства, правая часть больше левой, то g (x) > 0. Следовательно, обе части неравенства неотрицательны (для тех x, которые являются решениями неравенства, другие x нас не интересуют). Значит, возведение в квадрат не нарушает равносильности и можно записать равносильную нашему неравенству систему неравенств:



Пример 1

Решите неравенство

Решение.

Сразу перейдём к равносильной системе:







Ответ. 


Пример 2

Решите неравенство

Решение.

Перейдём к равносильной системе:







Ответ. 



Неравенства вида

ОДЗ данного неравенства f (x) ≥ 0. Пусть для каких-то x из ОДЗ g (x) < 0. Тогда, очевидно, все эти x − решения, так как при этих x левая часть определена (x  ОДЗ) и неотрицательна, в то время как правая часть g (x) < 0.

Для других x из ОДЗ g (x) ≥ 0. Для них обе части неравенства неотрицательны, и его можно возвести в квадрат: Значит, данное неравенство равносильно совокупности неравенств:




Заметим, что в последнюю систему не входит требование f (x) ≥ 0. Оно и не нужно, так как выполняется автоматически ибо полный квадрат всегда неотрицателен.

Пример 3

Решите неравенство

Решение.

ОДЗ неравенства: x ≥ –3.

1. Если то все эти x  ОДЗ, для которых верно x < –1, − решения. Таким образом, − первая часть ответа.

2. Если то обе части неравенства неотрицательны, и его можно возвести в квадрат. Имеем:



Получаем, что решениями являются все

Объединяя результаты пунктов 1 и 2, получаем:

Ответ. 


Пример 4

Решите неравенство

Решение.

ОДЗ данного неравенства: Будем рассматривать только эти x, другие x не могут являться решениями данного неравенства.

1. Если то есть то все такие x из ОДЗ, удовлетворяющие этому условию, являются решениями неравенства. Значит, все x ≤ –3 − решения неравенства.

2. Если то есть а с учетом ОДЗ это означает, что то обе части неравенства неотрицательны. Возведём обе части неравенства в квадрат:



Уравнение имеет корни и Значит, решением неравенства являются С учётом получается, что на данном множестве решениями являются Объединяя результаты пунктов 1 и 2, получаем



Запишем это решение другим способом:









Ответ. 



Неравенства вида

ОДЗ данного неравенства: Обе части неравенства неотрицательны в ОДЗ, и потому можно возводить в квадрат. Получим равносильную систему




Заметим, что из неравенства следует, что то есть дополнительно это требовать и включать это неравенство в систему не нужно.

Отметим полезное следствие. Предположим, что ОДЗ неравенства уже найдено, и мы будем отбирать решения только из ОДЗ (это разумно, поскольку вне ОДЗ решений нет). Тогда исходное неравенство равносильно следующему: а та система, которой это неравенство равносильно, может быть представлена (для x из ОДЗ) в виде Следовательно, в ОДЗ




Ясно, что те же рассуждения применимы и для знака неравенства ≥. Отсюда можно сделать полезное заключение:

Знак разности совпадает со знаком выражения

Отсюда же получается ещё одно полезное следствие:

в ОДЗ:

Пример 5

Решите неравенство

Решение.

Перейдём к равносильной системе:



Решая эту систему методом интервалов, сразу получаем:

Ответ. 


Пример 6

Решите неравенство

Решение.

ОДЗ данного неравенства:




Заметим, что в ОДЗ x ≥ 0, поэтому существует и значит,



Мы воспользовались здесь тем, что в ОДЗ x ≥ 0, (x – 5)(x – 6) ≥ 0 и потому существуют выписанные в последней строчке корни. Кроме того, мы вынесли за скобку который по вышесказанному существует. Этот корень неотрицателен и потому не влияет на знак неравенства, следовательно, на него можно сократить, не забывая, что он может ещё обратиться в нуль и те x, для которых корень обращается в нуль, являются решениями неравенства. Таким образом, в ответ необходимо включить число x = 5. При x = 6 корень обращается в нуль, но x = 6 не входит в ОДЗ неравенства. Воспользуемся теперь тем, что знак разности корней совпадает со знаком разности подкоренных выражений. Имеем:







Учтём теперь ОДЗ и получим:

Ответ. 



Неравенства вида

ОДЗ данного неравенства: Предположим, что функции f (x) и g (x) не имеют общих корней. Рассмотрим вспомогательное неравенство






(*)

1. Если g (x) < 0, то для любого x из ОДЗ выполнено

2. Если g (x) ≥ 0, то выражение может иметь любой знак, но выражение всегда строго положительно. Умножая обе части неравенства (*) на строго положительное число не меняя знака неравенства, перейдём к равносильному неравенству



Таким образом, в ОДЗ



Значит, при g (x) ≥ 0, знак разности совпадает со знаком разности в ОДЗ.

Получаем следующие условия равносильности.



Запоминать приведённые системы неравенств не нужно, важно понимать, как они получаются.

Пример 7

Решите неравенство

Решение.

Выполним равносильные в ОДЗ преобразования и приведём неравенство к удобному для применения результатов настоящего пункта виду.







Мы не случайно сделали последнее преобразование. Важно понимать, чему здесь конкретно равняется функция g (x) = 2x – 8. Типичной ошибкой является считать, что g (x) = 2x + 8.

ОДЗ данного неравенства: то есть Теперь перейдём к равносильной системе. В ОДЗ







С учётом ОДЗ сразу получаем:

Ответ. 



^ СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ.


1) А.Г.Мордкович. Алгебра 8 класс. Учебник для общеобразовательных учреждений - Москва: Издательство «Мнемозина», 1999.

2) М.Я.Выгодский. Справочник по элементарной математике - Москва: Издательство «Наука», 1986.

3) А.П.Савин. Энциклопедический словарь юного математика – Москва: Издательство «Педагогика», 1989.

4) А.И.Макушевич. Детская энциклопедия – Москва: Издательство «Педагогика», 1972.

5) Н.Я.Виленкин. Алгебра для 9 класс. Учебное пособие для учащихся школ и классов с углубленным изучением изучением математики – Москва: Издательство «Просвещение», 1998.