Устаревшая ед частотного интервала. Названа в честь франц физика Ф. Савара (F. Savart). 1 С
Вид материала | Документы |
- Синдром удлинённого интервала qt и проблемы безопасности психофармакотерапии, 109.2kb.
- Товариство з обмеженою, 119.57kb.
- Н. Г. Чернышевского кафедра теоретической и математической физики рабочая программа, 152.3kb.
- Программа по физике для 10-11 классов общеобразовательных, 75.87kb.
- Татьяна Евгеньевна Зыкова. Сюных лет ему была интересна литература, 95.59kb.
- Электронная газета в рамках «Дня науки», посвященного Году российской космонавтики, 85.16kb.
- Лекция Логические основы компьютеров , 369.25kb.
- Игра ) Имя известного ученого, в честь которого названа самая популярная программа, 21.91kb.
- Физика биологических систем, 39.45kb.
- Динамика культурных процессов в современной России, 39.45kb.
Одновитковые катушки, разрушающиеся при однократном использовании, явл. наиболее простой конструкцией для получения импульсных С. м. п. св. 1 МЭ. Они обладают малой собств. индуктивностью, поэтому для их питания применяют импульсные источники тока большой силы (батареи конденсаторов, рис. 3). Мощность батарей может превышать 1010 Вт, а генерируемые токи достигать неск. МА. При получении поля используются механич. и тепловая инерционность материала катушки, когда токовый слой не успевает существенно увеличить свои размеры до момента достижения током макс. значения. При разряде конденсаторных батарей с запасённой энергией 20— 800 кДж получают поля 1—3,5 МЭ в катушках с диаметром и длиной неск. мм. Время существования такого поля составляет 1—2 мкс.
В существенно больших объёмах С. м. п. можно получать сжатием магн. потока с использованием взрывчатых в-в (ВВ). Такие устройства наз. взрывомагнитными или магнитокумулятивными (МК-) генераторами (рис. 4,а). Начальный магн. поток в них создаётся при разряде конденсаторной батареи через нагрузочную катушку L и проходит через внеш.

Рис. 3. Одновитковый соленоид, включённый в цепь конденсаторной батареи: С -конденсаторная батарея; Р — разрядник; R — сопротивление контура; L — внеш. индуктивность контура.
зазор А. При сжатии зазора, вызванного взрывом ВВ, магн. поток вытесняется из зазора в катушку, увеличивая в ней напряжённость поля. Таким методом получают поля напряжённостью ~2,0 МЭ в объёмах до 1000 см3 при длительности импульса 1—5 мкс.


Рис. 4. Схематич. изображение методов получения сверхсильных импульсных магн. полей. а — МК-генератор плоского типа: 1 — ВВ, 2— детонатор, 3—фронт детонац. волны; б — цилиндрич. МК-генератор: Н0— нач. магн. поле, L — лайнер; в — сжатие магн. потока лайнером L, ускоряемым электродинамич. силами.
Рекордные импульсные магн. поля получены в системах, принципиальная схема к-рых дана на рис. 4, б. Начальный магн. поток создаётся внутри проводящей цилиндрич. оболочки (лайнера) L. Для создания нач. потока может быть использована либо конденсаторная батарея, либо МК-генератор типа изображённого на рис. 4, а; затем взрывом ВВ лайнер подвергается быстрому радиальному сжатию, при этом сжимается за хваченный магн. поток. Этим методом получены импульсные поля ~10 МЭ с хорошим воспроизведением результатов.
Сжатие магн. потока, заключённого внутри цилиндрич. лайнера, может производиться также и электродина-
562
мич. силами, когда вместо ВВ используют давление внеш. магн. поля (рис. 4, в). Теоретически этот способ позволяет получать большие скорости радиального сжатия лайнера и, следовательно, большие поля, чем при взрыве ВВ. Практически в таких системах получают поля ~2,8—3,1 МЭ. Измеряют С. м. п. прокалиброванными индукц. датчиками (магн. зондами), а также по величине Фарадея эффекта и Зеемана эффекта в С. м. п.
• Алексеевский Н. Е., Петр Леонидович Капица, «УФН», 1964, т. 83, в. 4, с. 761; Техника больших импульсных токов и магнитных полей, М., 1970; К н о п ф е л ь Г., Сверхсильные импульсные магнитные поля, пер. с англ., М., 1972.
^ В. Ф. Демичев.
СВЕРХТЕКУЧЕСТЬ, состояние квантовой жидкости, при к-ром она протекает через узкие щели и капилляры без трения.
Сверхтекучесть 4Не. Жидкий гелий 4Не становится сверхтекучим ниже темп-ры T=2,17 К, при давлении насыщенных паров ps=38,8 мм рт. ст. Свехтекучий 4Не наз. Не II (см. Гелий жидкий), несверхтекучий жидкий 4Не наз. He I. С. Не II была открыта П. Л. Капицей в 1938. В 1972—74 было установлено, что С. обладает также жидкий 3Не при темп-ре ниже Tс=2,6•10-3 К и давлении 2,58•104 мм рт. ст. (34 атм). Переход жидких 4Не и 3Не в сверхтекучее состояние представляет собой фазовый переход II рода.
Сверхтекучую жидкость нельзя представлять как жидкость, не обладающую вязкостью, т. к. эксперименты с крутильными колебаниями диска, погружённого в Не II, показали, что вызываемое вязкостью затухание колебаний при темп-ре, не слишком далёкой от Т («лямбда-точки»), мало отличается от затухания аналогичных колебаний в Не I.
Теория сверхтекучести Не II была создана Л. Д. Ландау в 1941. Эта теория, получившая название д в у х ж и д к о с т н о й г и д р о д и н а м и к и, основана на представлении о том, что при низких темп-рах св-ва Не II как слабовозбуждённой квант. системы обусловлены наличием в нём элементарных возбуждений (квазичастиц).
Не II можно представить состоящим из двух взаимопроникающих компонент: нормальной и сверхтекучей. Норм. компонента при темп-рах, не слишком близких к Т, представляет собой совокупность квазичастиц двух типов — фононов и ротонов. При T=0 плотность норм. компоненты n=0, поскольку при этом любая квант. система находится в осн. состоянии и возбуждения (квазичастицы) в ней отсутствуют. При темп-рах от абс. нуля до 1,7—1,8 К совокупность элем. возбуждений в Не II можно рассматривать как идеальный газ квазичастиц. С дальнейшим приближением к Т из-за заметно усиливающегося вз-ствия квазичастиц модель идеального газа для них становится неприменимой. Вз-ствие квазичастиц между собой и со стенками сосуда обусловливает вязкость норм. компоненты. Остальная часть Не II — сверхтекучая компонента — вязкостью не обладает и поэтому свободно протекает через узкие щели и капилляры; её плотность s=-n, где — плотность жидкости. При Т=0 s=, с ростом темп-ры концентрация квазичастиц растёт, поэтому s уменьшается и, наконец, обращается в нуль при Т=Т (С. в -точке исчезает, рис. 1). Согласно теории Ландау, жидкость перестаёт быть сверхтекучей и в случае, когда скорость её потока превышает критич. значение, при к-ром начинается спонтанное образование ротонов. При этом

^ Рис. 1. Диаграмма, иллюстрирующая двухжидкостную модель Не II (n/ — отношение плотности норм. компоненты к плотности Не II).
сверхтекучая компонента теряет импульс, равный импульсу испускаемых ротонов, и, следовательно, тормозится. Однако эксперим. значение критич. скорости существенно меньше того, к-рое требуется по теории Ландау для разрушения С.
С микроскопич. точки зрения появление С. в жидкости, состоящей из атомов с целым спином (бозонов), напр. атомов 4Не, связано с переходом при T
Конденсатная ф-ция должна быть непрерывной, поэтому её фаза при обходе по замкнутому контуру может меняться лишь на 2N, где N — целое число. Это означает, что циркуляция скорости сверхтекучей компоненты по любому замкнутому контуру может принимать только дискретные значения N•hlm. Поэтому сверхтекучая компонента — это не просто идеальная жидкость с потенц. течением, она обладает особыми макроскопич. квантовыми св-вами. Во-первых, при течении сверхтекучей компоненты по каналу, замкнутому в кольцо, циркуляция скорости vs вдоль канала квантуется с квантом циркуляции h/m. Под влиянием внеш. воздействия скорость течения не может уменьшаться непрерывно, а только скачком. В процессе скачкообразного перехода от течения с N квантами циркуляции к течению с N-1 квантами требуется разрушить сверхтекучее состояние (обратить s в нуль) в нек-рой области и, следовательно, преодолеть большой потенц. барьер. Поэтому течение в замкнутом канале чрезвычайно устойчиво. Во-вторых, в сверхтекучей компоненте могут существовать т. н. квантованные вихри (Л. Онсагер, 1948; Р. Фейнман, 1955, США) с циркуляцией вокруг оси вихря, принимающей дискретные значения. В отличие от вихрей в обычной жидкости (см. Вихревое движение), эти вихри устойчивы и не исчезают под влиянием вязкости норм. компоненты. На оси этих вихрей , а вместе с ней и s обращаются в нуль. Квантованные вихри осуществляют вз-ствие между сверхтекучей и норм. компонентами сверхтекучей жидкости. Их рождение приводит хотя и к слабому, но конечному затуханию потока сверхтекучей жидкости в замкнутом канале. При нек-рой скорости движения сверхтекучей компоненты относительно норм. компоненты или стенок сосуда квантованные вихри образуются столь интенсивно, что сверхтекучая компонента начинает испытывать трение со стороны норм. компоненты или стенок сосуда. В рамках этой теории С. пропадает при скоростях, существенно меньших скоростей по теории Ландау и более близких к реальным значениям критич. скорости. Квантованные вихри наблюдаются экспериментально при вращении сосуда с Не II. При достаточно большой угл. скорости вращения сосуда они образуют вихревую систему со ср. скоростью ,vs, совпадающей со скоростью твердотельного вращения [, r]. Кроме того, в экспериментах с ионами, инжектируемыми в Не II, обнаружены квантованные вихри, имеющие форму кольца.
Сверхтекучесть 3Не. Атомы 3Не обладают полуцелым спином, т. е. они— фермионы, а 3Не — ферми-жидкость. Если между фермионами имеются си-
663
лы притяжения, приводящие к образованию попарно связанных фермионов, т. н. куперовских пар (см. ^ Купера эффект), то такие пары обладают целочисленным спином. По этому признаку они — бозоны и могут образовывать Бозе-конденсат. Силы вз-ствия между ч-цами в 3Не таковы, что лишь при темп-рах порядка неск. мК в 3Не создаются условия для образования куперовских пар и возникновения С. Открытию С. у 3Не способствовало освоение эфф. методов получения низких темп-р — Померанчука эффекта и магнитного охлаждения. С их помощью удалось выяснить характерные особенности диаграммы состояния 3Не при сверхнизких темп-рах (рис. 2).

^ Рис. 2. Диаграмма состояния 3Не при низких темп-рах, р — давление, Н — магн. поле.
В отличие от 4Не (см. рис. 1 в ст. Гелий жидкий), на диаграмме состояния 3Не обнаружены две сверхтекучие фазы (А и В). Переход норм. ферми-жидкости в любую из этих фаз представляет собой фазовый переход II рода. Переход из сверхтекучей фазы А в сверхтекучую фазу В относится к фазовым переходам I рода. В магн. поле линия перехода из несверхтекучей фазы в фазу А расщепляется на две линии, каждая из к-рых явл. линией перехода 2-го рода. В области между линиями возникает ещё одна фаза (A1). Во всех трёх фазах образовавшиеся куперовские пары обладают спином s=1 и орбитальным квант. числом L=1. Фазы различаются по структуре волновой ф-ции куперовской пары, к-рая определяет как сверхтекучие, так и магн. св-ва фазы. В фазе В у куперовских пар в среднем нет выделенных направлений спина и орбит. момента импульса. По сверхтекучим св-вам B-фаза эквив. Не II, а по магн. св-вам напоминает изотропный антиферромагнетик. В фазе А куперовская пара имеет ср. направление l орбит. момента импульса, к-рое в равновесии одинаково для всех пар в жидкости, поскольку эти пары образуют Бозе-конденсат. В случае, если l не меняется в пр-ве (напр., фиксируется границей сосуда или внеш. полями), сверхтекучие св-ва фазы А отличаются от св-в Не II лишь тем, что фаза А анизотропна с осью анизотропии вдоль l и коэфф., входящие в ур-ния двухжидкостной гидродинамики Ландау, в т. ч. плотности норм. и сверхтекучей компонент, явл. тензорами. В общем случае, когда l может меняться в пр-ве, осн. отличие фазы А от Не II заключается в том, что скорость сверхтекучей компоненты vs не явл. потенциальной. Циркуляция vs по замкнутому контуру зависит от изменения в пр-ве вектора l. Это приводит к тому, что торможение потока сверхтекучей компоненты может осуществляться не только за счёт образования квантованных вихрей, как в Не II, но и непрерывно, путём осцилляции вектора l в канале. На поверхности канала, где вектор l фиксирован, торможение осуществляется посредством движения точечных дефектов — буджумов. При вращении сосуда может возникать как система квантованных вихрей, так и периодич. структура с непрерывным распределением l и vs. По магн. св-вам фаза А напоминает одноосный антиферромагнетик. Кроме того, поскольку орбит. момент куперовских пар частично передаётся эл-нам атомов 3Не, фаза А обладает также слабым (10-11 магнетонов Бора на атом) спонтанным магн. моментом, направленным по l, и явл. пока единственным известным жидким ферромагнетиком.
Эффекты, сопутствующие сверхтекучести. В сверхтекучей жидкости, кроме обычного (первого) звука (колебаний плотности), может распространяться т. н. второй звук, представляющий собой звук в газе квазичастиц (колебания плотности квазичастиц, следовательно, и темп-ры). Возможны и иные виды колебаний: капиллярные волны, звук. колебания сверхтекучей части жидкости в узких капиллярах (т. н. четвёртый звук) и др. Сверхтекучая жидкость обладает аномально высокой теплопроводностью, причиной к-рой явл. конвекция — теплота переносится макроскопич движением газа квазичастиц. При нагревании Не II в одном из сообщающихся (через капилляр) сосудов между сосудами возникает разность давлений (термомеханический эффект). Этот эффект объясняется тем, что в сосуде с большей темп-рой повышена концентрация квазичастиц. Из-за того, что узкий капилляр не пропускает вязкого потока норм. компоненты, возникает избыточное давление газа квазичастиц, подобное осмотическому давлению в р-ре. Существует и обратный эффект (т. н. механокалорический эффект): при быстром вытекании Не II из сосуда через капилляр темп-ра внутри сосуда повышается (в нём увеличивается концентрация квазичастиц), а вытекающий гелий охлаждается. Интересными св-вами обладает сверхтекучая
плёнка гелия, образующаяся на твёрдой стенке сосуда. Так, напр., она может выравнивать уровни Не II в сосудах, имеющих общую стенку.
• Капица П. Л., Эксперимент, теория, практика, 2 изд., М., 1977; Квантовые жидкости и кристаллы. Сб. ст., пер. с англ., М., 1979; Паттерман С., Гидродинамика сверхтекучей жидкости, пер. с англ., М., 1978; Халатников И. М., Теория сверхтекучести, М., 1971; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971; Quantum liquids, ed. by 3. Ruvalds and T. Regge, Amst,—N.Y.— Oxf., 1978. Г. Е. Воловик.
^ СВЕРХТОНКАЯ СТРУКТУРА (сверхтонкое расщепление уровней энергии),
расщепление уровней энергии атома на близко расположенные подуровни, вызванное вз-ствием магн. момента ядра с магн. полем атомных эл-нов. Энергия ξ этого вз-ствия зависит от возможных взаимных ориентации спина ядра и электронных спинов. Число этих ориентации определяет число компонент С. с. Уровни энергии могут также расщепляться и смещаться в результате вз-ствия квадрупольных моментов ядер с электрич. полем эл-нов.
Расстояние между подуровнями С. с. ~ в 1000 раз меньше, чем между уровнями тонкой структуры, т. к. ξξ~ в 1000 раз меньше энергии спин-орбитального взаимодействия, вызывающего тонкое расщепление. Вследствие С. с. уровней в спектре атома вместо одной спектральной линии появляется группа близко расположенных линий — С. с. спектр. линии.
С. с. спектр. линии может усложняться также вследствие отличия частот спектр. линий изотопов хим. элемента — изотопич. смещения. При этом происходит наложение спектр. линий разл. изотопов, из смеси к-рых состоит элемент. Изотопич. смещение для тяжёлых элементов того же порядка, что и ξ. С. с. может наблюдаться также в спектрах молекул и кристаллов.
СВЕТ, 1) в узком смысле — то же, что и видимое излучение, т. е. эл.-магн. волны в интервале частот, воспринимаемых человеческим глазом (7,5X1014—4,0•1014 Гц), что соответствует длинам волн в вакууме от ~400 до ~760 нм. С. очень высокой интенсивности глаз воспринимает в несколько более широком диапазоне. Световые волны разл. частот воспринимаются человеком как разл. цвета (подробнее см. в ст. Колориметрия).
2) С. в широком смысле — синоним оптического излучения, включающего, кроме видимого, излучение УФ и ИК областей спектра.
^ А. П. Гагарин.
СВЕТИМОСТЬ в точке поверхности. одна из световых величин, отношение светового потока, исходящего от элемента поверхности, к площади этого элемента. Единица С. (СИ) — люмен с квадратного метра (лм/м2). Аналогичная величина в системе энергетич. величин наз. энергетической С. (и злучательностью) и измеряется В Вт/М2.
Д. Н. Лазарев.
664
^ СВЕТОВАЯ ОТДАЧА. 1) С. о. атома, одно из пондеромоторных действий света, заключающееся в том, что атом, испускающий фотон, приобретает импульс отдачи, направленный в сторону, противоположную вылету фотона. При спонтанном испускании разные атомы ансамбля получают импульсы отдачи в разл. произвольных направлениях; при вынужденном испускании — в одном определ. направлении. См. Световое давление.
2) С. о. источника света, отношение излучаемого источником светового потока к потребляемой им мощности. Измеряется в люменах на Ватт (лм/Вт).. Служит хар-кой экономичности источников; С. о. совр. ламп накаливания общего назначения 8—20 лм/Вт, люминесцентных ламп — до 90 лм/Вт, металлогалогенных и натриевых — до 130 лм/Вт. См. также Световая эффективность, Источники оптического излучения.
Д. Н. Лазарев.
^ СВЕТОВАЯ ЭНЕРГИЯ, одна из осн. световых величин, равная произведению светового потока на длительность освещения. Единица С. э.— люмен-секунда (лм•с). См. также Спектральная световая эффективность излучения. В системе энергетич. величин аналогичная величина — энергия излучения (лучистая энергия), единица
измерения — Дж.
Д. Н. Лазарев.
^ СВЕТОВАЯ ЭФФЕКТИВНОСТЬ излучения, отношение светового потока к соответствующему потоку излучения. Единица С. э.—лм•Вт-1. См. также Спектральная световая эффективность. Д. Н. Лазарев.
СВЕТОВОД (светопровод, волновод оптический), закрытое устройство для направленной передачи (канализации) света. В открытом пр-ве его передача возможна только в пределах прямой видимости и связана с потерями, обусловленными нач. расходимостью излучения, поглощением и рассеянием в атмосфере. Переход к С. позволяет значительно уменьшить потери световой энергии при её передаче на большие расстояния, а также передавать световую энергию по криволинейным трассам.
Одним из типов С. явл. л и н з о в ы й в о л н о в о д — система заключённых в трубу и расположенных на определ. расстояниях (обычно через 50—100 м) стеклянных линз, к-рые служат для периодич. коррекции волн. фронта светового пучка. В кач-ве корректоров могут также применяться газовые линзы или зеркала определённой формы.
Наиболее перспективный тип С.— гибкий волоконный С. с низкими оптич. потерями, позволяющий передавать свет на большие расстояния. Он представляет собой тонкую нить из оптически прозрачного материала, сердцевина к-рой радиуса а1 имеет показатель преломления n1, а внеш. оболочка с радиусом а2 имеет показатель преломления n2
Поэтому лучи, распространяющиеся под достаточно малыми углами к оси С., испытывают полное внутреннее отражение на поверхности раздела сердцевины и оболочки и распространяются только по сердцевине. В зависимости от назначения С. его диаметр 2a1 составляет от неск, мкм до неск. сотен мкм, а 2а2— от неск. десятков до неск. тысяч мкм. Величины 2а1 и n1 -n2 определяют число типов волн (мод), к-рые могут распространяться по С. при заданной длине волны света.

^ Рис. 1. Поперечное сечение волоконного световода.
Выбирая 2a1 и n1-n2 достаточно малыми, можно добиться, чтобы С. работал в одномодовом режиме. Волоконные С. находят широкое применение в системах оптической связи, в вычислит. технике, в датчиках разл. физ. полей и т. д.
Важнейшими хар-ками С., предназначенных для подобных применений, являются оптич. потери, обусловленные поглощением и рассеянием света в С., и информац. полоса пропускания. В 70-х гг. 20 в. созданы волоконные С. с малыми потерями: затухание сигнала ~1 дБ/км в ближней ИК области спектра. Типичный спектр оптич. потерь в таких С. представлен на рис. 2. Материалом для этих С.

Рис. 2. Спектр оптич. потерь в стеклянном волоконном световоде.
служит кварцевое стекло; различия показателей преломления сердцевины и оболочки достигают легированием стекла (напр., бором, германием, фосфором). Минимально возможные потери в таких С. составляют ~0,2 дБ/км на волне 1,55 мкм. Полоса пропускания типичных многомодовых волоконных С. со ступенчатым профилем показателя преломления составляет величину 20—30 МГц•км, с градиентным профилем — 400—600 МГц•км. Наиболее широкополосны одномодовые С. в области длин волн 1,26—1,32 мкм, где материальная дисперсия кварцевых стёкол ближе к 0; полоса пропускания составляет —1011 Гц•км.
Волоконные С. с самыми низкими потерями изготавливают методом хим. осаждения из газовой фазы. В кач-ве исходных соединений используются хлориды кремния, германия и др. Получаемая этим методом заготовка диаметром 10—20 мм и длиной 200— 400 мм перетягивается в волоконный С. диаметром 125—150 мкм с одноврем. покрытием его защитно-упрочняющей полимерной оболочкой.
Разработаны волоконные С. более сложной конструкции, напр. многослойные С. и С. с эллиптической сердцевиной. Одномодовые С. последнего типа перспективны для применений, где требуется сохранение поляризации распространяющегося света. Перспективными явл. волоконные С. для среднего ИК диапазона длин волн (2—11 мкм), в к-рый попадают длины волн генерации химических, СО и СО2-лазеров. Имеются материалы, такие, как халькогенидные стёкла, флюоридные стёкла, щёлочно-галоидные кристаллы, в к-рых оптич. потери могут составлять величину ~10-1—10-3 дБ/км в указанном диапазоне.
Для целей интегральной оптики разработаны тонкоплёночные и диффузные диэлектрич. волноводы — С., представляющие собой тонкую (порядка длины световой волны) однородную плёнку, нанесённую на однородную подложку. Необходимое условие волноводного режима, т. е. существования поверхностных световых волн, заключается в том, что показатель преломления плёнки больше показателей преломления подложки и среды над волноводом. Световая волна в таком С. распространяется в процессе многократных полных отражений от её стенок. Диэлектрич. С. изготавливают методом катодного распыления стекла или др. материала (ZnS, CdS, ZnSe) на кварцевой подложке, методом эпитаксиального наращивания из жидкой или газообразной фазы, методом ионной имплантации (подложка бомбардируется ионами Li, T1 или протонами).
• Маркузе Д., Оптические волноводы, пер. с англ., М., 1974; Основы волоконно-оптической связи, под ред. М. Бар-носки, пер. с англ., М., 1980; Д и а н о в Е. М., Волоконные световоды для оптической связи. Справочник по лазерам, т. 2, М., 1978; Девятых Г. Г., Дианов Е. М., Волоконные световоды с малыми оптическими потерями, «Вестник АН СССР», 1981, №10, с. 54.
^ Е. М. Дианов.