Устаревшая ед частотного интервала. Названа в честь франц физика Ф. Савара (F. Savart). 1 С
Вид материала | Документы |
- Синдром удлинённого интервала qt и проблемы безопасности психофармакотерапии, 109.2kb.
- Товариство з обмеженою, 119.57kb.
- Н. Г. Чернышевского кафедра теоретической и математической физики рабочая программа, 152.3kb.
- Программа по физике для 10-11 классов общеобразовательных, 75.87kb.
- Татьяна Евгеньевна Зыкова. Сюных лет ему была интересна литература, 95.59kb.
- Электронная газета в рамках «Дня науки», посвященного Году российской космонавтики, 85.16kb.
- Лекция Логические основы компьютеров , 369.25kb.
- Игра ) Имя известного ученого, в честь которого названа самая популярная программа, 21.91kb.
- Физика биологических систем, 39.45kb.
- Динамика культурных процессов в современной России, 39.45kb.
^ СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ, одно из четырёх фундам. вз-ствий элем. ч-ц. Три остальных вз-ствия — слабое, электромагнитное и гравитационное — гораздо слабее С. в. В отличие от двух последних, С. в. явл. короткодействующим: его радиус ~10-13 см (ожидаемый радиус слабого вз-ствия ок. 2•10-16 см).
В обычном стабильном в-ве при не слишком высокой темп-ре С. в. не вызывает никаких процессов и его роль сводится к созданию прочной связи между нуклонами в ядрах (энергия связи составляет в ср. ок. 8 МэВ на нуклон). Однако при столкновениях ядер или нуклонов, обладающих достаточно высокой энергией, С. в. приводит к многочисл. ядерным реакциям. Особенно важную роль в природе играют реакции слияния (термоядерного синтеза), в результате к-рых четыре нуклона объединяются в ядро гелия. Эти реакции (при существ. участии также и слабого вз-ствия) идут на Солнце и явл. осн. источником используемой на Земле энергии. Начиная с энергий сталкивающихся нуклонов порядка неск. сотен МэВ, С. в. приводит к рождению -мезонов, а при ещё больших энергиях — к рождению странных частиц (К-мезонов, гиперонов), «очарованных» частиц, «красивых» частиц и множества мезонных и барионных резонансов. Все эти сильно взаимодействующие ч-цы наз. адронами.
На опыте установлен ряд закономерностей С. в. и участвующих в нём ч-ц. Так, было обнаружено, что существуют группы адронов с близкими св-вами — изотопические мультиплеты. Входящие в один такой мультиплет ч-цы имеют одинаковые значения барионного заряда, странности, «очарования», «красоты», одинаковые спины, близкие (с точностью от 0,1% до 3%) массы и отличаются лишь значениями электрич. зарядов. Напр., протон и нейтрон образуют изотопич. дуплет, а +-, 0-, --мезоны — изотопич. триплет. С. в. обладает св-вом изотопической инвариантности; у всех ч-ц, входящих в один изотопич. мультиплет, С. в.
одинаково. Изотопич. инвариантность нарушается эл.-магн. вз-ствием и малыми разностями масс ч-ц, принадлежащих данному изотопич. мультиплету.
По мере обнаружения новых адронов (большинство адронных резонансов было открыто в 60-х гг.) выяснилось, что изотопич. мультиплеты группируются в ещё большие семейства — т. н. SU(3)-мультиплеты (см. Элементарные частицы). Массы ч-ц, входящих в один такой мультиплет, различаются довольно сильно. Это явл. одним из проявлений того, что SU(3)-симметрия, ответственная за комплектование SU(3)-мультиплетов, нарушается сильнее, чем изотопич. инвариантность.
В классификации адронов чётко проявляется и др. закономерность: ч-цы с данными барионным зарядом, странностью, изотопич. спином и электрич. зарядом, отличающиеся только значениями спина, также образуют семейства. Если по оси абсцисс откладывать квадраты масс ч-ц, М2, а по оси ординат — значения их спинов J, то ч-цы, принадлежащие данному семейству, располагаются на прямой линии: J~М2. Такие линии, изображающие зависимость J от М2, получили назв. траекторий Редже (см. Редже полюсов метод).
Процессы С. в. так же, как и процессы, обусловленные др. типами вз-ствий, подчиняются таким фундам. принципам, как причинность (см. Причинности принцип) и перекрёстная симметрия (кроссинг-симметрия). Матем. следствием причинности явл. то, что амплитуды, описывающие процессы вз-ствия элем. ч-ц (сечение процесса пропорц. квадрату модуля амплитуды),— аналитич. ф-ции своих аргументов. Аналитичность амплитуд приводит, в частности, к дисперсионным соотношениям, связывающим между собой действнт. и мнимые части амплитуд (к-рые могут быть независимо измерены опытным путём). Кроссинг-симметрия заключается в том, что одна и та же аналитич. ф-ция при разл. значениях своих переменных описывает амплитуды неск. процессов, напр. -+р-+р, ++р++р и р+р~++-, к-рые получаются один из другого путём переноса ч-цы из левой части реакции в правую (и наоборот) с одноврем. заменой её на соответствующую античастицу. В результате св-ва амплитуды
процесса аннигиляции р+р~++- имеют тесную связь со св-вами амплитуды рассеяния ±-мезонов протонами. Аналогичные связи существуют и для др. реакций.
Подход, основанный на общих св-вах амплитуд процессов, особенно плодотворен при высоких энергиях, когда энергии сталкивающихся ч-ц много больше их энергий покоя mc (m — масса ч-цы). В области асимптотически больших энергий ξ
678
(ξ/mc2) имеется ряд фундам. теорем, из к-рых наиб. важны теорема Фруассара и теорема Померанчука. Согласно теореме Фруассара, сечения процессов С. в. адронов не могут асимптотически расти быстрее, чем ln2ξ. Согласно теореме Померанчука, если сечение вз-ствия адронов с ростом энергии стремится к конечному пределу, то полное сечение вз-ствия ч-цы и соответствующей античастицы с данной мишенью асимптотически должны быть равными, напр.
полн(р~р)=полн(рр), полн(К+р) =полн(K-р), где полн(ab) обозначает полное сечение вз-ствия ч-ц а и b.
На опыте характерные значения полных сечений С. в. адронов при высоких энергиях лежат в области 20—25 мбарн для вз-ствия К- и -мезонов с нуклонами и 40—45 мбарн для вз-ствия нуклонов с нуклонами и обнаруживают тенденцию к медл. росту. Сечение упругого рассеяния составляет ок. 1/5 полного сечения.
При сближении адронов высоких энергий на расстояния порядка радиуса действия С. в. доминируют множественные процессы. В этих условиях упругое рассеяние по своему хар-ру аналогично дифракции света на полностью поглощающем («чёрном») или, точнее, частично прозрачном («тёмно-сером») шарике (с радиусом порядка радиуса действия С. в.). В частности, угл. распределение упруго рассеянных ч-ц имеет острый максимум вперёд (по направлению падающих ч-ц), подобный максимуму при дифракц. рассеянии света. При этом характерные углы составляют величину порядка /R, где — длина волны де Бройля рассеиваемой ч-цы (=ћ/p, р — импульс ч-цы), а R — радиус нуклона (~10-13 см).
Детальная теор. картина упругого рассеяния адронов, а также двухчастичных неупругих реакций (напр., реакции перезарядки -+р°+n) основывается на представлении о том, что в процессе рассеяния сталкивающиеся ч-цы обмениваются своеобразными адронными комплексами с перем. спином и массой. Эти комплексы ведут себя как своего рода квазичастицы и наз. реджеонами. В результате устанавливается глубокая связь между процессами рассеяния и траекториями Редже. При этом оказывается, что радиус ч-цы (радиус «тёмно-серого» шарика) меняется с ростом энергии.
Как отмечалось, осн. доля процессов при высоких энергиях — множеств. рождение ч-ц. Ср. множественность (ср. число ч-ц, рождённых в одном столкновении) при энергиях в системе центра инерции (с. ц. и.) порядка десятков ГэВ равна прибл. 10—12 (в основном это -мезоны) и медленно растёт с ростом энергии (ок. 27 при энергии 540 ГэВ). Поперечные импульсы рождённых ч-ц практически не зависят от энергии сталкивающихся ч-ц и в основном составляют примерно 0,3—0,5 ГэВ/с. Этот факт, обнаруженный впервые при изучении космических лучей, был подтверждён опытами на ускорителях. Ч-цы с большими поперечными импульсами (1ГэВ/с) рождаются очень редко, однако не так редко, как можно было бы ожидать, если бы нуклоны были абсолютно «рыхлыми» образованиями размером порядка 10-13 см. Рождение ч-ц с большими поперечными импульсами подтверждает картину строения нуклона, полученную при исследовании глубоко неупругих процессов вз-ствия эл-нов и нейтрино с нуклонами. Согласно этой картине, при больших передачах импульса нуклон ведёт себя как совокупность лёгких точечных (бесструктурных) ч-ц, получивших назв. партонов. В реакциях множеств. рождения распределения вторичных ч-ц по продольным импульсам подобны при разл. энергиях столкновения. Они совпадают друг с другом, если использовать в кач-ве переменной отношение р/ркакс, где р — импульс вторичной ч-цы, а рмакс — её макс. возможный импульс при данной энергии сталкивающихся ч-ц. Такое поведение, когда распределения зависят от безразмерного параметра (р/pмакс), наз. с к е й л и н г о м Фейнмана (см. Масштабная инвариантность),
Законченная теория адронов и С. в. между ними пока отсутствует, однако имеется теория, к-рая, не являясь ни законченной, ни общепризнанной, позволяет объяснить осн. св-ва адронов. Эта теория — квантовая хромодинамика, согласно к-рой адроны состоят из кварков (мезоны из кварка и антикварка, а барионы — из трёх кварков), а силы между кварками обусловлены обменом глюонами. Все обнаруженные адроны состоят из кварков пяти разл. типов («ароматов»): u, d, s, с, b.
Нуклоны и -мезоны содержат лишь и- и d-кварки, странные ч-цы содержат наряду с u и d также и s-кварки, «очарованные» ч-цы — с-кварки, а открытые в 1977 ипсилон-частицы (Г) — b-кварки. В сильном и эл.-магн. вз-ствиях «аромат» сохраняется, в слабом вз-ствии кварки одного типа («аромата») превращаются в кварки др. типа. В процессах С. в. сталкивающиеся адроны могут обмениваться содержащимися в них кварками, и, кроме того, происходит также рождение и аннигиляция пар кварк-антикварк (см. Квантовая теория поля).
Кварки обладают дробными электрич. зарядами Q: Qu=Qc=+2/3, Qd=Qs=Qb=-1/3 (в ед. элем. электрич. заряда е). Массы лёгких кварков u, d, s выражаются через массы - и К-мезонов, а массы с и b — соответственно через массы частиц и -частиц. Теор. оценки дают: mu~4 МэВ, md~7 МэВ, ms~150 МэВ, mс~1,3 ГэВ, mb~4,5 ГэВ. Ожидают, что существуют ещё более тяжёлые кварки, t.
Свободные кварки, несмотря на тщат. поиски, не обнаружены. Согласно квант. .хромодинамике, кварки не могут быть освобождены из адронов: они находятся внутри адронов в области размером ~10-13 см. Такое необычное поведение кварков (оно наз. англ. словом «конфайнмент» — заключение, пленение) связано со св-вами глюонов и с существованием ещё одного квант. числа — «цвет». Кварк каждого «аромата» может находиться в трёх «цветовых» состояниях, или обладать тремя разл. «ц в е т о в ы м и з а р я д а м и». Во всех наблюдаемых адронах «цветовые заряды» кварков в совокупности компенсируются, так что «цветовые заряды» адронов равны нулю (обычно говорят, что адроны «бесцветные», «белые»). Подобно тому как электрич. заряд явл. источником фотонного поля, «цветовые заряды» явл. источниками глюонных полей. Имеется восемь разл. глюонов. Все они — безмассовые, электрически нейтр. ч-цы со спином 1 и отличаются друг от друга комбинациями «цветовых зарядов». Наличие у глюонов «цветовых зарядов» делает их св-ва необычными. В частности, силы, обусловленные обменом глюонами, растут с ростом расстояния между двумя «цветовыми зарядами», что, по-видимому, приводит в конечном счёте к «пленению» кварков внутри адронов (т. н. удержание «цвета»). «Пленёнными» оказываются и сами глгюоны, так что свободных «цветных» частиц не существует.
«Цветовые заряды» кварков не зависят от их «ароматов», и если бы массы всех кварков были одинаковы, то и массы адронов были бы вырождены по «ароматам». Напр., были бы одинаковые массы -, К- и D-мезонов. Малая величина разности масс u- и d-кварков по сравнению с их кинетич. энергиями внутри адронов явл. причиной изотопич. инвариантности. Малая величина самих масс u- и d-кварков явл. причиной т. н. киральной инвариантности С. в. (см. Киральная симметрия).
Системы, состоящие из u-, d-, s-кварков, адекватно описывают ч-цы, входящие в известные мезонные и барионные ^ SU(3)-мультиплеты. Если бы масса s-кварка была того же масштаба, что и массы u- и d-кварков, то SU(3)-симметрия С. в. была бы такой же хорошей симметрией, как и изотопич. инвариантность.
Когда адрон участвует в процессе, в к-ром он получает большой импульс (глубоко неупругое рассеяние, рождение ч-ц с большими поперечными импульсами), то осн. вз-ствие разыгрывается на малых расстояниях, глубоко внутри адрона. Здесь С. в. кварков с глюонами, а следовательно, и кварков между собой ослабевает и на
679
столкновение кварка с энергичной ч-цей (с эл-ном или др. кварком) соседние кварки влияют очень слабо. Т. о., при больших передачах импульса кварки (и глюоны) сталкиваются как практически свободные ч-цы (т. е. явл. партонами). Это св-во кварков и глюонов, предсказываемое квант. хромодинамикой, наз. асимптотической свободой. При удалении партона на большие расстояния от той точки, где он получил большой импульс, он превращается в струю летящих в одном направлении адронов. При этом происходит обмен «цветовым зарядом» с оставшимися кварками, так что как струя, так и остаток получаются «белыми». На опыте такие адронные струи наблюдались в ряде процессов.
Теория С. в. на малых расстояниях, связанная с асимптотич. свободой, практически завершена, но динамика вз-ствия на больших расстояниях и, в частности, механизм «пленения» поняты пока не столь хорошо. Здесь важную роль, по-видимому, играют глюонные флуктуации физ. вакуума (см. Инстантон). Возможно, что адроны явл. как бы пузырьками кваркового газа в плотном вакууме, создаваемом флуктуациями глюонного поля. Качественно такой вывод согласуется с описанием адронов на основе т. н. «модели мешков» (см. Квантовая теория поля).
Существует ряд теоретич. схем, в к-рых делается попытка создать единую теорию сильного, слабого и эл.-магн. вз-ствий (т. н. «Великое объединение»), В этих схемах на единой основе рассматриваются лептоны и кварки, промежуточные векторные бозоны, фотоны и глюоны.
• Фейнман Р., Взаимодействие фотонов с адронами, пер. с англ. M., 1975; Зельдович Я. Б., Классификация элементарных частиц и кварки «в изложении для пешеходов», «УФН», 1965, т. 86, в. 2; Мандельстам С., Растущие траектории Редже и динамика резонансов, там же, 1970, т. 101, в. 3; Д р е л л С., Партоны и глубоко неупругие процессы при высоких энергиях, там же, 1972, т. 106, в. 2; Н а м 6 у И., Почему нет свободных кварков, там же, 1978, т. 124, в. 1; Г л э ш о у Ш., . Кварки с цветом и ароматом, там же, 1976, т. 119, в. 4; А з и м о в Я. И., Д о к ш и ц е р Ю. Л., Х о з е В. А., Глюоны, «УФН», 1980, т. 132, в. 3; Д р ё м и н И. М., О глюонных струях, там же, т. 131, в. 4; Вайнштейн А. И. [и др.], Чармоний и квантовая хромодинамика, там же, 1977 т. 123., в. 2.
Л. Б. Окунь.
^ СИЛЬНОЛЕГИРОВАННЫЙ ПОЛУПРОВОДНИК, полупроводник с очень большой концентрацией примесей (или структурных дефектов крист. решётки), когда расстояние между соседними примесными атомами столь мало, что перекрываются их силовые поля и волновые функции локализованных вблизи них электронов. В результате в С. п. возникает примесная зона, сливающаяся с ближайшей к ней собств. зоной проводимости или валентной зоной. Потенциальная энергия ξ носителя заряда в С. п. зависит от координат сразу многих атомов примеси и из-за флуктуации в распределении примесных атомов оказывается случайной величиной. Из-за наличия случайного поля квазиимпульс р носителей не сохраняется, так что понятие дисперсии закона ξ(р) имеет смысл лишь на достаточно больших расстояниях от краёв зон.
В С. п. даже при Т=0 К электропроводность 0. Плотность состояний постепенно убывает в глубь запрещённой зоны («хвост» плотности состояний), В С. п. возможно поглощение света частоты <ξg/ћ, ξg— ширина запрещённой зоны. Коэфф. поглощения в этой области частот экспоненциально убывает с ростом величины ξg-ћ (п р а в и л о У р б а х а). При отсутствии компенсации (см. Компенсированный полупроводник) С. п. вырождены. С. п. используются в туннельных диодах, светоэлектрических диодах, инжекционных лазерах, датчиках Холла, устойчивых к ядерному излучению, тензометрах и т. д.
• Ф и с т у л ь В. И., Сильно легированные полупроводники, М., 1967; Бонч-Бруевич В. Л., Вопросы электронной теории сильно легированных полупроводников, в кн.: Физика твердого тела, под ред. С. В. Тябликова, М., 1965 (Итоги науки. Физика); Электронная теория неупорядоченных полупроводников, М., 1981.
Э. М. Эпштейн.
^ СИЛЬНОТОЧНЫЕ УСКОРИТЕЛИ, устройства для получения мощных потоков заряженных ч-ц, создающих ток I>104А при энергии ч-ц выше 105 эВ. Характерным масштабом тока в теории С. у. принято считать величину I0=m0с3/е=17кА, составленную из мировых констант: скорости света с, заряда электрона е и его массы покоя m0. При токах, существенно превышающих это значение, собств. электромагн. поля электронного пучка определяющим образом влияют на его динамику. Производной масштабной величиной является мощность
W0=m20c5/e2=8,7 ГВт.
С. у. содержит источник импульсного высокого напряжения и вакуумный диод (рис. 1). В большинстве С. у. первичное накопление энергии осуществляется в конденсаторах С при сравнительно низком напряжении (~100 кВ), после чего следует увеличение напряжения на 1—2 порядка по схеме Аркадьева — Маркса (или с помощью импульсного трансформатора) и «обострение» импульса напряжения в одном или неск. каскадах.
Рис. 1. Схема сильноточного ускорителя: 1 — высоковольтный выпрямитель; 2 — промежуточный накопительный элемент; 3 — электроды двойной формирующей линии; 4 — трансформирующая линия передачи; Р — разрядники; C — ёмкости.
Эти каскады выполнены обычно в виде отрезков линий передачи, погружённых в диэлектрик для увеличения уд. энергоёмкости. Для этого используются жидкие диэлектрики (трансформаторное масло в случае высокого напряжения, вода — низкого), не «запоминающие» пробоев и имеющие повышенную электрич. прочность при длительности импульса, меньшей ~1 мкс. Для малых напряжений и больших токов используются одинарные линии, в обратном случае — двойные (т. н. л и н и и Б л ю м л я й н а), создающие удвоение напряжения на нагрузке, к-рой служит диод. Его катод работает в режиме взрывной электронной эмиссии, когда электрич. поле порядка 105 В/см, усиливаясь на микронеоднородностях катода, вызывает их тепловой взрыв и образование поверхностной плазмы, обладающей практически бесконечной эмиссионной способностью.
Ускорение электронов происходит в диоде под действием высокого напряжения до тех пор, пока диодный промежуток (размером от неск. мм до неск. см) не закоротится распространяющейся с электродов плазмой. Диоды С. у. работают в режиме ограничения тока пространств. зарядом. При относительно небольших напряжениях V в диоде с электродами в виде двух плоских дисков радиуса R, разделённых зазором d (рис. 2), течёт равномерно распределённый электронный ток:
^ Рис. 2. Траектории электронов в диоде с малым (а) и большим (б) токами.
W0=7,3•М3/2(МВ)R2/d2(кА). (1)
Если же ток столь велик, что ларморовский радиус электрона (см. Лармора прецессия) в собств. магн. поле, создаваемом пучком, мал по сравнению с зазором d (рис. 2, б), то это поле обусловливает динамику пучка,
680
и ток определяется соотношением:
I=8,5R/darch(кA), (2)
где 2V+1(MB) — полная энергия электронов в ед. энергии покоя m0c2. При этом эффективно эмиттирующие участки расположены по периферии катода, а ток на аноде сфокусирован в центр. пятно малого размера.
В существующих С. у. энергия ч-ц пучка ограничена (10—15 МэВ) трудностями высоковольтной техники. Длительность импульса варьируется в диапазоне от 30 нс до 10 мкс. Нижний предел определяется возможностями формирования мощного импульса ускоряющего напряжения, а верхний — конечным энергозапасом накопит. элемента и заполнением ускоряющего промежутка образующейся на электродах плазмой. Электронный пучок используется либо внутри диода, либо выводится в дрейфовое пространство через окно в аноде из тонкой фольги, прозрачной для электронов. Распространены также коаксиальные диоды с продольным магн. полем, вдоль к-рого распространяется пучок.
Для генерации ионных пучков анод диода делают из диэлектрика соответствующего хим. состава. Эмиссия ионов происходит из плазмы под действием внеш. поля и поля пространств. заряда электронов (см. Ионная эмиссия). Плазма образуется в результате электрич. пробоя анода вдоль его поверхности. Чтобы увеличить долю энергии, передаваемую в ионный пучок, ток электронов через диод должен быть уменьшен при условии сохранения большого отрицат. пространств. заряда. Для этого используется либо магн. поле (т. н. диоды с магн. изоляцией, рис. 3, а), либо
Рис. 3. Схемы ионных диодов с магн. изоляцией (а) и рефлексных диодов (б): К — катод; А — анод; П — поверхностная плазма;