[по имени амер физика И. А. Раби (I. I. Rabi)], резонансный метод исследования магн моментов ядер, атомов и молекул и внутримол
Вид материала | Документы |
- 32. Эволюция понятия элементарная частица. Неизменность свойств ядер, атомов, молекул, 827.07kb.
- Молекулярная физика и термодинамика статистический и термодинамический методы Молекулярная, 12.67kb.
- Элементы квантовой механики и физики атомов, молекул, твердых тел, 156.85kb.
- X международная конференция Импульсные лазеры на переходах атомов и молекул ampl, 299.2kb.
- Магнитные свойства молекул, 29.04kb.
- Моделирование структур молекул по Огжевальскому, 61.04kb.
- Десятая новая лекция аксиомы единства канарёв, 209.76kb.
- Программа-минимум кандидатского экзамена по специальности, 79.71kb.
- Молекулярная физика и термодинамика. Лекция №1 Молекулярно-кинетическая теория Основные, 10053.18kb.
- Вегето- резонансный тест Оценка по методу Кузьменко (метод Накатани) Диабат (метод, 12.28kb.
(х, у, z)=-1/VhklFhkl exp[-2i(hx+ky+lz)], (2)
где V — объём элем. ячейки, Fhkl — коэфф. Фурье, к-рые в Р. с. а. наз. с т р у к т у р н ы м и а м п л и т у д а м и, i=-1. Каждая структурная амплитуда характеризуется тремя целыми числами h, k, l и связана с тем дифракц. отражением, к-рое определяется условиями (1). Назначение суммирования (2) — математически собрать дифракц. рентг. отражения, чтобы получить изображение ат. структуры (производить синтез изображения т. о. приходится из-за отсутствия в природе линз для рентг. излучения).
Дифракц. отражение — волн. процесс. Он характеризуется амплитудой, равной │Fhkl│, и фазой hkl (сдвигом
фазы отражённой волны по отношению к падающей), через к-рую выражается структурная амплитуда:
Fhkl=│Fhkl│(coshkl+isinhkl).
Дифракц. эксперимент позволяет измерять только интенсивности отражений, пропорциональные │Fhkl│2, но не их фазы. Определение фаз составляет осн. проблему расшифровки структуры кристалла, одинаковую в принципиальном отношении для кристаллов, состоящих и из атомов, и из молекул. Определив координаты атомов в молекулярном крист. в-ве, можно выделить его молекулы и установить их размер и форму.
Легко решается задача, обратная структурной расшифровке: матем. расчёт структурных амплитуд по известной ат. структуре, а по ним — интенсивностей дифракц. отражений. Метод проб и ошибок, исторически первый метод расшифровки структур, состоит в сопоставлении экспериментально полученных │Fhkl│эксп с вычисленными на основе пробной модели значениями │Fhkl│выч. В зависимости от величины фактора расходимости

пробная модель принимается или отвергается. Для некрист. объектов этот метод явл. практически единственным средством интерпретации дифракц. картины.
Другой путь к расшифровке ат. структур монокристаллов — применение т. н. ф-ций Патерсона (ф-ций межатомных векторов). Для построений ф-ций Патерсона нек-рой структуры, состоящей из N атомов, перенесём её параллельно самой себе так, чтобы в фиксир. начало координат попал сначала первый атом. Векторы от начала координат до всех атомов структуры (включая вектор нулевой длины до первого атома) укажут положения N максимумов ф-ции межатомных векторов, совокупность к-рых наз. изображением структуры в атоме 1. Добавим к ним ещё N максимумов, положение к-рых укажет N векторов от второго атома, помещённого с помощью параллельного переноса в то же начало координат. Проделав эту процедуру со всеми N атомами (рис. 5), получим N2 векторов. Ф-ция, описывающая их. положение, и есть ф-ция Патерсона Р(u, v, w) (u, v, w — координаты точек в пр-ве межатомных векторов).
Для ф-ции Р (u, v, w) можно получить выражение:
P(u, v, w)=2/Vhkl│Fhkl│2cos2(hu+kv+lw),
из к-рого следует, что она определяется модулями структурных амплитуд,
641

^ Рис. 5. Схема построения ф-ции Патерсона для структуры, состоящей из трёх атомов.
не зависит от их фаз и, следовательно, может быть вычислена непосредственно по данным дифракц. эксперимента. Трудность интерпретации ф-ции P(u, v, w) состоит в необходимости нахождения координат N атомов из N2 её максимумов, многие из к-рых сливаются из-за того, что межатомные векторы часто перекрываются. Наиболее прост для расшифровки случай, когда в структуре содержится один тяжёлый и неск. лёгких атомов. Изображение •такой структуры в тяжёлом атоме будет значительно отличаться от др. её изображений. Среди разл. методик, позволяющих определить модель исследуемой структуры по ф-ции Патерсона, наиболее эффективными оказались т. н. суперпозиц. методы, к-рые позволили формализовать анализ и выполнять его на ЭВМ.
Другой класс методов нахождения структуры но рентг. дифракц. данным — т.н. прямые методы определения фаз. Учитывая условие положительности электронной плотности в кристалле, можно получить большое число неравенств, к-рым подчиняются коэфф. Фурье (структурные амплитуды). Методами неравенств можно сравнительно просто анализировать структуры, содержащие до 20—40 атомов в элем. ячейке кристалла. Для более сложных структур применяются методы, к-рые основаны на вероятностном подходе, реализованы на ЭВМ и позволяют расшифровывать структуры, содержащие 100—200 и более атомов в элем. ячейке кристалла.
Итак, если фазы структурных амплитуд установлены, то может быть вычислено но (2) распределение электронной плотности в кристалле, причём максимумы этого распределения соответствуют положениям атомов в структуре (рис. 6). Заключит. уточнение координат атомов проводится на ЭВМ, в зависимости от качества эксперимента и сложности структуры их получают с точностью до тысячных долей А. С помощью совр. дифракц. эксперимен та можно вычислять также количеств. хар-ки тепловых колебаний атомов в кристалле с учётом анизотропии этих колебаний.

^ Рис. 6. а — проекция на плоскость аb ф-ции межатомных векторов минерала баотита [Ba4Ti4(Ti, Nb)4[Si4Ol2]O16,Cl]. Линии проведены через одинаковые значения ф-ции межатомных векторов (линии равного уровня); б — проекция электронной плотности баотита на плоскость аb, полученная расшифровкой ф-ции межатомных векторов. Максимумы электронной плотности (сгущения линий равного уровня) отвечают положениям атомов в структуре; в — изображение модели ат. структуры баотита. Каждый атом Si расположен внутри тетраэдра, образованного четырьмя атомами О; атомы Ti и Nb в октаэдрах, составленных атомами О. Тетраэдры SiO4 и октаэдры Ti(Nb)O6 в структуре баотита соединены, как показано на рис. Часть элем. ячейки кристалла, соответствующая рис. a и б, выделена штриховой линией. Точечные линии на рис. а и б определяют нулевые уровни значений соответствующих ф-ций.
Р. с. а. даёт возможность установить и более тонкие хар-ки ат. структур, напр. распределение валентных эл-нов в кристалле (эта задача решена пока только для простейших структур). Весьма перспективно для этой цели сочетание нейтронографич. и рентгенографич. исследований: нейтронографич. данные о координатах ядер атомов сопоставляют с распределением в пр-ве электронного облака. Для мн. физ. и хим. задач совместно используют Р. с. а. и резонансные методы (см. Электронный парамагнитный резонанс, Ядерный магнитный резонанс). Фазы структурных амплитуд белковых кристаллов можно определить только в результате совместных рентгеноструктурных и биохим. исследований. При исследовании белков методами Р. с. а. необходимо закристаллизовать как сам белок, так и его производные, полученные введением в них низкомолекулярных соединений, содержащих тяжёлые атомы. Таким способом исследуют белковые кристаллы, в элем. ячейке к-рых может находиться до десятков тысяч атомов.
О многочисл. применениях методов Р. с. а. для исследования нарушений структуры тв. тел см. в ст. ^ Рентгенография материалов.
• Белов Н. В., Структурная кристаллография, М., 1951; Б о к и й Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ, 2 изд., т. 1, М., 1964; Китайгородский А. И., Теория структурного анализа, М., 1957; Липсон Г., К о к р е н В., Определение структуры кристаллов, пер. с англ., М., 1956; Бюргер М., Структура кристаллов и векторное пространство, пер. с англ., М., 1961; Гинье А., Рентгенография кристаллов, пер. с франц., М., 1961; Woolfson M.M., An introduction to X-ray crystallography, Camb., 1970; Crystallographic computing, ed. F. R. Ahmed, Cph., 1970; Stout G. H., Jensen L. H., X-ray structure determination, N.Y.—L., [1968]; Хейкeр Д. М., Рентгеновская дифрактометрия монокристаллов, Л., 1973; Б л а н д е л Т., Джонсон Л., Кристаллография белка, пер. с англ., М., 1979; Вайнштейн Б. К., Симметрия кристаллов. Методы структурной кристаллографии, М., 1979; Electron and magnetization densities in molecules and crystals, ed. by P. Becker, N.Y.—L. 1980. ' В. И. Симонов.
^ РЕНТГЕНОВСКИЙ ТЕЛЕСКОП, прибор для исследования временных и спектр. св-в источников косм. рентг. излучения, а также для определения координат этих источников и построения их изображения.
Существующие Р. т. работают в диапазоне энергий фотонов рентг. излучения от 0,1 до сотен кэВ, т. е. в интервале длин волн от 10 нм до сотых долей нм. Для проведения астрономич. наблюдений в этой области длин волн Р. т. поднимают за пределы земной атмосферы на ракетах или ИСЗ, т. к. рентг. излучение сильно поглощается атмосферой. Излучение с >20 кэВ можно наблюдать начиная с высот ~30 км с аэростатов.
Р. т. позволяет: 1) регистрировать с высокой эффективностью рентг. фо-
642
тоны; 2) отделять события, соответствующие попаданию фотонов нужного диапазона энергий от сигналов, вызванных воздействием заряж. ч-ц и гамма-фотонов; 3) определять направление прихода рентг. излучения.
В Р. т. для диапазона 0,1—30 кэВ детектором фотонов служит пропорциональный счётчик, наполненный газовой смесью (Ar+СН4, Ar+СО2 или Хе+СО2). Поглощение рентг. фотона атомом газа сопровождается испусканием фотоэлектрона (см. Фотоэлектронная эмиссия), оже-электронов

^ Рис. 1. а—схема рентг. телескопа со щелевым коллиматором; б — работа телескопа в режиме сканирования.
(см. Оже-эффект) и флуоресцентных фотонов (см. Флуоресценция). Фотоэлектрон и оже-электрон быстро теряют свою энергию на ионизацию газа, флуоресцентные фотоны также могут быстро поглотиться газом благодаря фотоэффекту. В этом случае полное число образовавшихся электронно-ионных пар пропорц. энергии рентг. фотона. Т. о., по импульсу тока в цепи анода восстанавливается энергия рентг. фотона.
В обычных условиях Р. т. облучается мощными потоками заряж. ч-ц и гамма-фотонов разл. энергий, к-рые детектор Р. т. регистрирует вместе с рентг. фотонами от исследуемого источника излучения. Для выделения рентг. фотонов из общего фона применяется метод антисовпадений (см. Совпадений метод). Приход рентг. фотонов фиксируют также по форме создаваемого ими импульса электрич. тока, поскольку заряж. ч-цы дают сигналы, более затянутые во времени, чем те, что вызываются рентг. фотонами.
Для определения направления на рентг. источник служит устройство, состоящее из щелевого коллиматора и жёстко закреплённого с ним на одной раме звёздного датчика. Коллиматор (набор пластин) ограничивает поле зрения Р. т. и пропускает рентг. фотоны, идущие лишь в небольшом телесном угле (~10—15 квадратных градусов). Рентг. фотон, прошедший коллиматор (рис. 1,a), регистрируется верх. объёмом счётчика. Возникший импульс тока по цепи верх. анода
проходит схему антисовпадений (поскольку нет запрещающего сигнала с ниж. анода) и подаётся на анализатор для определения временных и энергетич. хар-к фотона. Затем по телеметрии информация передаётся на Землю. Одновременно передаётся информация звёздного датчика о ярчайших звёздах, попавших в его поле зрения. Эта информация позволяет установить положение осей Р. т. в пр-ве в момент прихода фотона.
При работе Р. т. в режиме сканирования направление на источник определяется как положение Р. т., при к-ром скорость счёта достигает максимума. Угл. разрешение Р. т. со щелевым коллиматором или аналогичным сотовым коллиматором составляет несколько десятков угловых минут.
Значительно лучшим угл. разрешением (~ неск. десятков секунд) обладают Р. т. с модуляц. коллиматорами (рис. 2, а). Модуляц. коллиматор представляет собой две (или больше) проволочные одномерные сетки, устанавливаемые между детектором и щелевым коллиматором, для чего последний поднимается над детектором на высоту ~1 м и наблюдения ведутся в режиме либо сканирования (рис. 1,б), либо вращения относительно оси, перпендикулярной плоскости сеток. Проволочки в каждой сетке коллиматора устанавливаются параллельно друг другу на расстоянии, равном диаметру проволочки. Поэтому при движении источника по полю зрения Р. т. тени от верх. проволочек скользят по ниж. сетке, попадая то на проволочки, и тогда скорость счёта максимальна, то между ними, и тогда она минимальна (фон).
Угл. распределение скорости счёта Р. т. с модуляц. коллиматором (ф у н к ц и я о т к л и к а) показано на рис. 2, б. Для n-сеточного модуляц. коллиматора угол между соседними максимумами 0=2n-1r, где r=d/l — угл. разрешение Р. т. В большинстве случаев Р. т. с модуляц. коллиматорами дают точность локализации рентг. источников, достаточную для их отождествления с небесными объектами, излучающими в иных диапазонах эл.-магн. волн.
С модуляц. коллиматорами начинает конкурировать методика кодиров. апертуры, позволяющая получить r<1'. В Р. т. с кодиров. апертурой поле зрения перекрывается экраном, обладающим неоднородным пропусканием по всей площади. Детектор излучения в таком Р. т. позиционно-чувствительный, т. е. кроме энергии рентг. фотона измеряют и координаты точки, где он был зарегистрирован. При таком экране точечный источник излучения, находящийся на бесконечности, даёт распределение скорости счёта по поверхности детектора, соответствующее функции пропускания экрана.

^ Рис. 2. а — устройство рентг. телескопа с модуляц. коллиматором; б — угл. распределение скорости счёта.
Положение источника рентг. излучения в поле зрения Р. т. определяется по положению максимума корреляц. функции между полученным распределением скорости счёта по поверхности детектора и функцией пропускания экрана.
В области энергий >15 кэВ в кач-ве детекторов Р. т. применяют крист. сцинтилляторы NaI (Тl) (см. ^ Сцинтилляционный счётчик); для подавления фона заряж. ч-ц высоких энергий и гамма-фотонов служат устанавливаемые на антисовпадения с первыми крист. сцинтилляторы CsI(Tl). Для ограничения поля зрения в таких Р. т. применяют активные коллиматоры — цилиндры из сцинтилляторов, включённые на антисовпадения со сцинтилляторами NaI(Tl).
В диапазоне энергий от 0,1 до неск. кэВ наиболее эффективны Р. т., в к-рых осуществляется фокусировка излучения, падающего под малыми углами на фокусирующее зеркало (рис. 3). Чувствительность такого Р. т. в ~103 раз превосходит Р. т. др. конструкций благодаря его способности собирать излучение со значит. площади и направлять на детектор малых размеров, что существенно повышает отношение сигнал/шум. Р. т., построенный по такой схеме, даёт двумерное изображение источника рентг.
643

^ Рис. 3. Схема фокусирующего рентг. телескопа.
излучения подобно обычному оптич. телескопу. Для построения изображения в фокусирующем Р. т. в кач-ве детекторов используют позиционно-чувствительные пропорц. камеры, микроканальные детекторы, а также приборы с зарядовой связью (ПЗС). Угл. разрешение в первом случае определяется гл. обр. пространств. разрешением камеры и составляет ~1', микроканальные детекторы и ПЗС дают 1—2" (для близких к оси пучков). При спектрометрич. исследованиях применяют ПП детекторы, брэгговские крист. спектрометры и дифракц. решётки с позиционно-чувствит. детекторами. Косм. источники рентг. излучения очень разнообразны. Рентг. излучение Солнца было открыто в 1948 в США с ракеты, поднявшей Гейгера счётчики в верх. слои атмосферы. В 1962 группой Р. Джиаккони (США) также с ракеты был обнаружен первый источник рентг. излучения за пределами Солнечной системы — «Скорпион Х-1», а также диффузный рентг фон, по-видимому, внегалактич. происхождения. К 1966 в результате экспериментов на ракетах было открыто ок. 30 дискретных рентг. источников. С выводом на орбиту серии спец. ИСЗ («УХУРУ», «Ариэль», «САС-3», «Вела», «Коперник», «ХЕАО» и др.) с Р. т. разл. типов были обнаружены сотни рентг. источников (галактич. и внегалактических, протяжённых и компактных, стационарных и переменных). Мн. из этих источников ещё не отождествлены с источниками, проявляющими себя в оптич. и др. диапазонах эл.-магн. излучения. Среди отождествлённых галактич. объектов: тесные двойные звёздные системы, один из компонентов к-рых — рентг. пульсар; одиночные пульсары (Crab, Vela); остатки сверхновых звёзд (протяжённые источники); временные (транзиентные) источники, резко увеличивающие светимость в рентг. диапазоне и вновь угасающие за время от неск. минут до неск. месяцев; т. н. б а р с т е р ы — мощные вспыхивающие источники рентг. излучения с характерным временем вспышки порядка неск. секунд. К отождествлённым внегалактич. объектам относятся ближайшие галактики (Магеллановы облака и Туманность Андромеды), радиогалактики Дева-А (М87) и Центавр-А (NGC 5128), квазары (в частности, ЗС 273), сейфертовские и др. галактики с активными ядрами; скопления галактик — самые мощные источники рентг. излучения во Вселенной (в них за излучение ответствен горячий межгалактич. газ с темп-рой 50 млн. К). Подавляющее большинство косм. рентг. источников явл. объектами, совершенно непохожими на те, что были известны до начала рентг. астрономии, и прежде всего они отличаются огромным энерговыделением. Светимость галактич. рентг. источников достигает 1036—1038 эрг/с, что в 103—105 раз превышает энерговыделение Солнца во всём диапазоне длин волн. У внегалактич. источников была зарегистрирована светимость до 1045 эрг/с, что указывает на необычность проявляющихся здесь механизмов излучения. В тесных двойных звёздных системах, напр., в кач-ве осн. механизма энерговыделения рассматривают перетекание в-ва от одного компонента (звезды-гиганта) к другому (нейтронной звезде или чёрной дыре) — дисковую аккрецию, при к-рой падающее на звезду в-во образует около этой звезды диск, где в-во благодаря трению разогревается и начинает интенсивно излучать. Среди вероятных гипотез происхождения диффузного рентг. фона, наряду с предположением о тепловом излучении горячего межгалактич. газа, рассматривается обратный Комптона эффект эл-нов на ИК фотонах, испущенных активными галактиками, или на фотонах реликтового излучения. Данные наблюдений с ИСЗ ХЕАО-В свидетельствуют о том, что значительный вклад (>35%) в диффузный рентг. фон дают далёкие дискретные источники, гл. обр. квазары.
• X-ray astronomy, ed. R. Giacconi, H. Gursky, Dordrecht—Boston, 1974; Шкловский И. С., Звёзды: их рождение, жизнь и смерть, 2 изд., М., 1977; К а п л а н С. А., Пикельнер С. Б., Физика межзвёздной среды, М., 1979.
Н. С. Ямбуренко.
^ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ (рентгеновские лучи), эл.-магн. ионизирующее излучение, занимающее спектр. область между гамма- и УФ излучением в пределах дл. волн от 10-4 до 103 Å (от 10-12 до 10-5 см). Открыты в 1895 нем. физиком В. К. Рентгеном. Р. и. с <2 Å условно наз. жёстким, с >2Å — мягким.
Источники Р. и. Наиболее распространённый источник Р. и.— рентгеновская трубка, в к-рой ускоренные электрич. полем эл-ны бомбардируют металлич. анод. Р. и. может быть получено при бомбардировке мишени ионами высокой энергии. В кач-ве источников Р. и. могут служить также нек-рые радиоактивные изотопы: одни из них непосредственно испускают Р. и., яд. излучения других (эл-ны или -частицы) бомбардируют металлич. мишень, к-рая испускает Р. и.; интенсивность Р. и. изотопных источников на неск. порядков меньше интенсивности излучения рентг. трубки,
а габариты, вес и стоимость значительно меньше, чем установки с рентг. трубкой.
Источниками мягкого Р. и. в области десятков и сотен А могут служить синхротроны и накопители эл-нов (см. ^ Синхротронное излучение). По интенсивности синхротронное Р. и. превосходит в указанной области спектра излучение рентг. трубки на 2—3 порядка. В рентг. диапазоне может лежать ондуляторное излучение и переходное излучение. Естеств. источниками Р. и. явл. Солнце и др. косм. объекты (см. Рентгеновский телескоп).
Спектр Р. и. может быть непрерывным или линейчатым. Н е п р е р ы в н ы й (т о р м о з н о й) с п е к т р испускают быстрые заряж. ч-цы в результате их торможения при вз-ствии с атомами мишени (см. Тормозное излучение). Интенсивность тормозного Р. и. распределена по всем частотам v (или длинам волн =c/) до высокочастотной границы 0 (коротковолновой границы 0), на к-рой энергия фотонов h0 равна энергии eV бомбардирующих эл-нов (е — заряд эл-на, V -разность потенциалов ускоряющего поля, пройденная им).
Линейчатый спектр Р. и. возникает после ионизации атома с выбрасыванием эл-на с одной из его внутр. оболочек при столкновениях атома с быстрой заряж. ч-цей (п е р в и ч н о е Р. и.) или при поглощении им кванта эл.-магн. излучения (ф л у о р е с ц е н т н о е Р. и.). Ионизов. атом из нач. возбуждённого состояния (с возбуждённого высокого уровня энергии) через 10-16 —10-15 с переходит в кон. состояние с меньшей энергией (на более низкий уровень энергии). При этом избыток энергии атом может испустить в виде кванта излучения определённой частоты. Частоты v такого Р. и. характерны для атомов каждого элемента, поэтому линейчатый спектр Р. и. наз. х а р а к т е р и с т и ч е с к и м. Зависимость от ат. номера Z определяется Мозли законом.
Взаимодействие Р. и. с в-вом. При вз-ствии Р. и. с в-вом могут наблюдаться ф о т о э ф ф е к т, сопровождающее его поглощение Р. и., а также рассеяние излучения. Фотоэффект возникает в том случае, когда атом, поглотив квант Р. и., выбрасывает один из своих внутр. эл-нов, после чего может либо совершить излучательный переход, испуская характеристич. Р. и., либо выбросить второй эл-н (оже-электрон) при безызлучательном переходе (см. Оже-эффект). При воздействии Р. и. на неметаллич. кристаллы могут возникать дефекты крист. решётки, представляющие собой ионы с дополнит. положит. зарядом, вблизи к-рого находятся избыточные эл-ны (рентг. экситон), они явл. центрами окраски и исчезают лишь при значит. повышении темп-ры.
При прохождении Р. и. через слой в-ва толщиной х его нач. интенсивность I0 уменьшается за счёт погло-
644
щения и рассеяния до величины I=I0е-x, где ( — коэфф. ослабления. В ДВ области спектра преобладает поглощение Р. и., в коротковолновой — его рассеяние. Степень поглощения растёт с Z.
Рассеяние Р. и. в области больших Z и происходит в осн. без изменения (когерентное рассеяние), а в области малых Z и , как правило, возрастает — происходит некогерентное рассеяние (комптоновское или комбинационное). При комптоновском рассеянии, носящем хар-р неупругого корпускулярного рассеяния, за счёт частично потерянной фотоном энергии из оболочки атома вылетает эл-н отдачи (см. Комптона эффект). При этом уменьшается энергия фотона и изменяется его направление; изменение К зависит от угла рассеяния. При комбинац. рассеянии рентг. фотона высокой энергии на лёгком атоме небольшая часть его энергии затрачивается на ионизацию атома и меняется направление движения фотона. Изменение таких фотонов не зависит от угла рассеяния.
Показатель преломления в-ва n для Р. и. отличается от единицы на очень малую величину =1-n10-6—10-5. Фазовая скорость Р. и. в среде больше скорости света в ней. Отклонение Р. и. при переходе из одной среды в другую очень мало (неск. угловых мин). При падении Р. и. из вакуума на поверхность тела под очень малым углом происходит п о л н о е в н е ш н е е о т р а ж е н и е.
2>