О. Э. Костерин общая биология курс лекций

Вид материалаКурс лекций

Содержание


2Надф+ 2адф + 2ф- + 2h
Подобный материал:
1   2   3   4   5   6   7   8   9   10   ...   26
Фотосинтез

На примере глюкозы мы рассмотрели, как в живых организмах органические молекулы расщепляются до углекислого газа и воды для получения энергии. Теперь рассмотрим обратный процесс – как эти органические вещества (та же глюкоза) образуются из углекислого газа и воды, т. е. фотосинтез. На самом деле есть и другие, менее распространенные варианты биосинтеза органики, которые мы рассмотрим далее. Однако главный – именно фотосинтез, в результате которого на Земле ежегодно образуется 150 млрд т сахаров.

Суммарную реакцию фотосинтеза мы уже вспоминали:


СО22О = (СН2О) + О2.


При дыхании мы расщепляли глюкозу, чтобы произвести определенное количество (около 30 штук) молекул АТФ. Логично предположить, что для синтеза глюкозы нужно затратить сколько-то молекул АТФ. Причем если учесть далеко не стопроцентный КПД биохимических реакций, скорее всего для синтеза одной молекулы глюкозы придется затратить несколько больше молекул АТФ. Естественно будет предположить, что, подобно дыханию, процесс синтеза органики будет состоять из двух частей – та, которая имеет дело с АТФ, и та, которая имеет дело с глюкозой, т. е. сначала где-то должен произойти синтез АТФ как универсального энергетического ресурса, а уже потом – синтез глюкозы за счет энергии этой АТФ. Оба этих процесса действительно имеют место.

Поскольку речь идет о том, чтобы увеличить, а не уменьшить количество органики, энергию для получения АТФ мы возьмем не из расщепления органики, а из другого источника. В самом распространенном случае источником будет являться солнечный свет.

Еще в начале исследований фотосинтеза было показано, что имеет место группа реакций, зависящих от освещенности и не зависящих от температуры, а есть группа реакций, которая, наоборот, не зависит от освещенности и зависит от температуры. Первая получила название световой стадии фотосинтеза, вторая – темновой стадии фотосинтеза. Не следует понимать это в том смысле, что одна идет днем, а другая – ночью. Оба набора реакций протекают одновременно, просто для одной свет нужен, а для другой – нет. Довольно естественно для реализуемых задач то, что световая фаза фотосинтеза напоминает окислительное фосфорилирование, а темновая фаза представляет собой цикл, в чем-то похожий на цикл Кребса.

Для ознакомления со световой фазой фотосинтеза нам необходимо рассмотреть такое химическое явление, как пигменты. Что такое пигменты? Это окрашенные вещества. А почему некоторые вещества окрашены, в то время как большинство веществ бесцветно? Что означает наше видение некоего цвета? Это означает, что от вещества нам приходит свет, в котором соотношение фотонов с разной длиной волны отличается от дневного белого света. Как вы знаете, белый свет представляет собой смесь фотонов в буквальном смысле всех цветов радуги. Окраска света означает преобладание определенных длин волн над другими. Мы рассматриваем вещества при дневном свете. Соответственно, если мы видим вещество окрашенным, значит, оно избирательно поглощает фотоны с определенными длинами волн. Не имея массы покоя, поглощенные фотоны перестают существовать. Куда же девается их энергия? Она идет на возбуждение молекулы, на перевод ее в новое, более энергетически насыщенное состояние.

Чтобы иметь способность поглощать свет и переходить в энергетически насыщенное состояние, молекула должна представлять собой систему, в которой такое состояние возможно. Большая часть органических пигментов представляет собой вещества с регулярным чередованием двойных и одинарных связей между углеродами, т. е. с сопряженными двойными связями. Эти связи образуют резонансные системы, в которых электроны, участвующие в образовании двойных связей (образованных орбиталями, не задействованными в sp2-гибридизации), могут перемещаться по всей системе и находиться в нескольких энергетических состояниях. Число таких состояний и энергия, необходимая для перехода электрона из одного в другое, строго фиксированы для каждой молекулы. Это следует из квантовой физики – науки, наиболее трудной для понимания неподготовленного человека, каковыми мы с вами являемся. Поэтому примем это на веру, доверившись критическим свойствам научного сообщества, которое в свое время приняло квантовую теорию не без сопротивления, но ее огромные успехи развеяли все сомнения.

Энергия, различающая состояния электрона в резонансных системах, такова, что близко соответствует энергии фотонов той или иной длины волны в пределах видимой части спектра. Поэтому резонансные системы будут поглощать те фотоны, энергия которых равна или немного больше перевода их электронов в одно из более энергетически насыщенных состояний. (Так как энергия фотона крайне редко в точности равна энергии возбуждения электрона, остаток энергии фотона после того, как основная ее часть отдана электрону, переходит в тепло). Именно поэтому вещества с резонансными системами как правило имеют окраску, то есть являются пигментами.

Давайте посмотрим на молекулы некоторых важных для нашего случая пигментов. Для начала на самый важный пигмент – хлорофилл.

Как и в случае гема, который присоединен к молекулам гемоглобина и цитохромов, мы видим ажурную и почти симметричную органическую конструкцию, включающую несколько двойных связей – порфириновое кольцо. В ее центре также находится атом металла, но не железа, как в случае гема, а магния. Он связан с четырьмя атомами азота (магний и порфириновое кольцо образуют комплекс). Мы вполне можем ожидать, что такая молекула будет окрашена, и не ошибемся. Эта молекула поглощает фотоны в фиолетовой и синей, а затем в красной части спектра, и не взаимодействует с фотонами в зеленой и желтой части спектра. Поэтому хлорофилл и растения выглядят зелеными – они попросту никак не могут воспользоваться зелеными лучами и оставляют их гулять по белу свету (делая его тем самым зеленее).

К порфириновому кольцу в молекуле хлорофилла приделан длинный углеводородный хвост. На рис. 6.1 он немного похож на якорную цепь. Он и является таковой. Не имея электроотрицательных атомов, эта часть молекулы неполярна и, следовательно, гидрофобна. При помощи нее хлорофилл заякоривается в гидрофобной средней части фосфолипидной мембраны.

Хлорофилл растений представлен двумя формами – a и b. В зеленых растениях примерно четверть хлорофилла представлена формой b. Он отличается тем, что одна метильная группа по краю порфиринового кольца -CH3 замещена на группу -CH2OH. Этого оказывается достаточно, чтобы сместить спектр поглощения молекулы.

В ходе световой фазы фотосинтеза энергия поглощенных фотонов солнечного света преобразуется в возбужденное состояние электронов молекулы хлорофилла и в дальнейшем используется для синтеза АТФ – мы уже видели, как живые системы умеют приручать возбужденные электроны, ловко и с выгодой для себя с ними обращаясь. Несколько другую структуру имеют каротиноиды – красные и желтые пигменты. (Именно каротиноиды окрашивают морковку и рябину, они же являются витамином А.) Но и у них есть система сопряженных двойных связей, несколько более простая (рис. 6.2). Каротиноиды тоже участвуют в фотосинтезе, но в качестве вспомогательных молекул.

Нам снова нужно сделать пространственную оговорку. Подобно тому как клеточное дыхание идет в митохондриях, фотосинтез идет в хлоропластах. Хлоропласты – это органеллы, похожие на митохондрии, но они крупнее и имеют более развитую внутреннюю структуру; наполнены плоскими пузырьками – тилакоидами, которые собраны в стопки – граны (рис. 6.3).

Пигменты фотосинтеза располагаются на внутренней стороне мембраны тилакоидов. Они организованы в фотосистемы – целые антенные поля по улавливанию света – каждая система содержит 250–400 молекул разных пигментов. Но среди них принципиальное значение имеет одна молекула хлорофилла а – она называется реакционным центром фотосистемы. Все остальные молекулы пигментов называются антенными молекулами. Все пигменты в фотосистеме способны передавать друг другу энергию возбужденного состояния. Энергия фотона, поглощенная той или иной молекулой пигмента, переносится на соседнюю молекулу, пока не достигнет реакционного центра. Когда резонансная система реакционного центра переходит в возбужденное состояние, она передает два возбужденных электрона молекуле-акцептору и тем самым окисляется и приобретает положительный заряд.

У растений существует две фотосистемы – 1 и 2. Молекулы их реакционных центров несколько различаются – первая имеет максимум поглощения света на длине волны 700 нм, вторая – 680 нм (оговорка сделана для того, чтобы пояснить изображения на схемах), обозначаются они Р700 и Р680. (Различия в оптимумах поглощения обусловлены небольшими различиями в структуре пигментов.) Обычно эти две системы работают сопряженно, как конвейер, состоящий из двух частей и называющийся нециклическим фотофосфорилированием (рис. 6.4).

Производственный цикл начинается с фотосистемы 2. С ней происходит следующее:

1) антенные молекулы улавливают фотон и передают возбуждение молекуле активного центра Р680;

2) возбужденная молекула Р680 отдает два электрона кофактору Q (очень похожий на тот, который участвует в цепи переноса электронов в митохондриях), при этом она окисляется и приобретает положительный заряд;

3) под действием определенных ферментов, содержащих марганец, окисленная молекула Р680 восстанавливается, отнимая два электрона от молекулы воды. При этом вода диссоциирует на протоны и молекулярный кислород. Для создания одной молекулы кислорода нужно восстановить две молекулы Р680, потерявшие в сумме четыре электрона. Эти электроны в свою очередь заимствуются у атомов водорода, пребывавших в составе воды, в результате чего образуются четыре протона.

Обратим внимание – именно здесь в ходе фотосинтеза образуется кислород. Поскольку он образуется путем расщепления молекул воды под действием света, этот процесс называется фотолизом воды;

4) эти протоны образуются во внутреннем пространстве тилакоида, где создается избыточная концентрация протонов по сравнению с окружающим пространством (т. е. более кислая среда). Таким образом, формируются наши старые знакомые – протонный градиент и мембранный потенциал. Мы уже знаем, как все это будет использовано: АТФ-синтетаза будет парами выпускать протоны наружу и синтезировать АТФ из АДФ. Обратим внимание на одно кажущееся отличие от митохондрий – при окислительном фосфорилировании в митохондриях протоны выкачиваются из пространства, ограниченного внутренней митохондриальной мембраной, и входят обратно через АТФ-синтетазу. В нашем случае протоны закачиваются во внутреннее пространство тилакоида и выходят оттуда через АТФ-синтетазу. Однако внутреннее пространстно тилакоида соответствует пространству между двумя мембранами хлоропласта – это как бы отшнуровавшиеся складки (подобные кристам митохондрий) внутренней мембраны; таким образом топологически он эквивалентен внешнему к хлоропласту пространству, то есть все процессы обмена протонами идут точно так же, как и в митохондрии.

5) между тем два электрона, поступившие к кофактору Q, передаются далее по цепочке белков, которая очень похожа на цепь переноса электронов. В ней тоже участвуют хиноны, цитохромы – белки, содержащие гем в комплексе с атомом железа, белки, содержащие железо и серу, опять-таки хлорофилл и пластоцианин – фермент, содержащий медь. И прохождение электронов по ней также сопровождается транспортом протонов против градиента концентрации сквозь мембрану тилакоидов, что опять-таки льет воду на мельницу АТФ-синтетазы;

6) в конце концов, электроны поступают от пластоцианина к реакционному центру фотосистемы 1 – молекуле Р700.

В фотосистеме 1 происходит следующее:

1) антенные молекулы ловят фотон и передают энергию в резонансную систему реакционного центра Р700, который возбуждается и отдает два электрона акцепторному железосодержащему белку (Р430). Как и в случае фотосистемы 2, Р700 тем самым окисляется и приобретает положительный заряд;

2) эта молекула восстанавливается и теряет заряд, получив два «успокоившихся» (но не до исходного состояния – их энергия еще не до конца израсходована!) электрона, изначально поступивших от фотосистемы 2. В этом случае необходимости в фотолизе нет и его не происходит;

3) Р430 отдает электроны другому железосодержащему белку, который называется ферродоксин;

4) получив электроны, этот белок восстанавливает кофермент НАДФ+ до НАДФ-Н. Данный кофермент представляет собой фосфорилированный НАД. Процесс происходит на внешней мембране тилакоида. Для него необходим протон, который берется из внутреннего пространства хлоропласта, внешнему по отношению к тилакоиду. Тем самым протонный градиент только усиливается.

Последний этап вам ничего не напоминает? Да, он напоминает то, как НАД-Н окислялся до НАД+ и отдавал электроны по цепи переноса электронов. Только тут все происходит в обратном порядке. Там НАД-Н передавал энергию электрону, который ее терял, проходя по цепи переноса электронов. А здесь, наоборот, электрон, возбужденный энергией солнечного света, накопленной двумя последовательно сопряженными фотосистемами, передает ее НАДФ+, восстанавливая его до НАДФ-Н.

Действительно, вся световая фаза фотосинтеза похожа на окислительное фосфорилирование в митохондриях тем, что в ходе него по сходной цепи белков передаются электроны, в результате чего в некоем ограниченном мембраной пространстве – в данном случае внутреннем пространстве тилакоида – создается избыточная концентрация протонов, а на мембране – разность потенциалов. Возникающая потенциальная энергия электростатических сил используется для синтеза АТФ за счет движения протонов по градиенту, осуществляемого АТФ-синтетазой. Отличие от окислительного фосфорилирования состоит в том, что если там для возбуждения электронов использовалась восстановленная молекула НАД-Н, то здесь для этого используется свет, а НАДФ+, наоборот, восстанавливается и используется в темновой стадии фотосинтеза (а может быть далее использован и в тех же митохондриях). В целом получается, что протоны образуются во внутреннем пространстве тилакоида при фотолизе воды, закачиваются туда же в ходе работы фотосистемы 2 и черпаются из внешнего пространства тилакоида для восстановления НАДФ+ до НАДФ-Н, через посредство которого водород поступает в синтезируемые в ходе фотосинтеза углеводы.

Однако фотосистема 1 может работать и автономно. При этом используется обходной путь переноса электронов от возбужденного реакционного центра – а именно та же цепь переноса электронов, которая ведет из фотосистемы 2. Электроны проходят по ней, вызывая сопряженный транспорт протонов из внешней среды тилакоида во внутреннюю, чем усиливается протонный градиент, и возвращаются обратно к реакционному центру фотосистемы 1 – Р700. Таким образом, здесь свет словно крутит колесо протонного насоса, не окисляя воды и не восстанавливая НАДФ. Это называется циклическим фотофосфорилированием (рис. 6.5). Оно может идти параллельно с нециклическим. Кроме того, оно используется некоторыми фотосинтетическими бактериями, которые в процессе фотосинтеза не выделяют кислорода.

Приблизительный результат световой фазы фотосинтеза при нециклическом фотофосфорилировании можно записать в виде такой реакции:

^ 2НАДФ+ 2АДФ + 2Ф- + 2H2O + 4 hv = 2НАДФ-Н + 2АТФ + O2.

Здесь hv – условное обозначение энергии одного фотона, Ф – условное обозначение остатка фосфорной кислоты из раствора. Приблизительный он потому, что, как и при окислительном фосфорилировании, количество АТФ, синтезируемое АТФ-синтетазой, не связано жесткой зависимостью от количества электронов, пропущенных по цепочке белков в фотосистеме II.

Наш приблизительный гешефт в результате световой фазы фотосинтеза, полная схема которой приведена на рис. 6.6, – одна АТФ и один восстановленный кофермент (который, как мы помним, при дыхании «стоит» 2,5 АТФ) на два фотона, т. е. почти две АТФ на один квант энергии, позаимствованной у одного пошлощенного фотона. Неплохо!

Итак, мы рассмотрели, откуда в ходе фотосинтеза берется энергия (т. е. АТФ). Осталось рассмотреть, как с использованием этой энергии делается органика. Один из способов универсален и используется всеми автотрофами - организмами, которые способны самостоятельно производить органику из неорганики: растениями, сине-зелеными водорослям, фотосинтетическими и хемосинтетическими бактериями. Он называется циклом Кальвина (рис. 6.7). Это еще один замкнутый цикл взаимопревращения органических веществ одно в другое под действием специальных ферментов, подобный циклу Кребса. И кстати, еще одна Нобелевская премия, 1961 года – открывшему его Мелвину Кальвину.

Цикл начинается с сахара, имеющего цепочку из пяти атомов углерода и несущего две фосфатные группы – рибулозо-1,5-бифосфат (и им же кончается). Процесс начинается, когда специальный фермент – рибулозобифосфаткарбоксилаза – присоединяет к нему молекулу СО2 (рис. 6.8). Образующаяся на короткое время шестиуглеродная молекула немедленно распадается на две молекулы глицерат-3-фосфата (он же 3-фосфоглицерат, с этим веществом мы уже встречались в гликолизе). Каждая из них содержит три атома углерода (поэтому цикл Кальвина называется также C3-путь фиксации углекислого газа).

Фактически фиксацию угелкислого газа в органике осуществляет именно этот фермент – рибулозобифосфаткарбоксилаза. Это на удивление медленный фермент – он карбоксилирует всего три молекулы рибулозо-1,5-бифосфата в секунду. Для фермента это очень мало! Поэтому самого данного фермента требуется много. Он фиксирован на поверхности тилакоидных мембран и составляет около 50 % от всех белков хлоропласта. Про него известно, что это самый распространенный белок в мире (подумайте почему).

Глицерат-3-фосфат с затратой одной молекулы АТФ фосфорилируется до дифосфоглицерата. Тот, в свою очередь, дефосфорилируется до глицеральдегид-3-фосфата, причем в ходе этой реакции одна молекула восстановленного НАДФ-Н окисляется до НАДФ+. Снова затраты энергии!

Получившееся соединение – глицеральдегид-3-фосфат – наш старый знакомый. Оно образуется в ходе расщепления глюкозы в процессе гликолиза, а именно при расщеплении фруктозо-1,6-бифосфата. Из него же в ходе ферментативных реакций, идущих без затраты энергии, можно получить глюкозу. Некоторые из реакций гликолиза необратимы (а именно те, в ходе которых дефосфорилируется АТФ), поэтому задействуются другие реакции и другие посредники.

Казалось бы, вот и весь фотосинтез. Но для того чтобы он продолжался, нам нужно каким-то образом регенерировать рибулозо-1,5-бифосфат – основной субстрат фиксирующего углекислый газ фермента. Поэтому на каждые 12 молекул образовавшегося глицеральдегид-3-фосфата только две идут на синтез глюкозы, а 10 направляются на восстановление шести молекул рибулозо-1,5-бифосфата. В этом процессе участвует 12 х 3 = 6 х 5 = 30 атомов углерода, которые перегруппируются из 10 трехуглеродных молекул в 6 пятиуглеродных. При этом на входе мы имеем 10 фосфатных групп (по одной на каждую молекулу глицеральдегид-3-фосфата), а на выходе должны иметь их 12. Однако на 6 молекул глицерат-3-фосфата дополнительно тратится не 2, а 6 молекул АТФ.

Если вычесть регенерирующие в ходе цикла вещества (которые дополнительно не синтезируются и не тратятся), то суммарное уравнение фиксации углекислоты получается таким:


6CO2 + 12НАДФ-Н +18 АТФ = 1 глюкоза + 12НАДФ+ + 18АДФ + 18Ф-+ 6H2O


(здесь Ф – это свободная фосфорная группа).

Мы получаем затраты 12 восстановленных коферментов и 18 АТФ на одну молекулу глюкозы. Если мы вспомним «цену» восстановленного кофермента в фирме «Цепь переноса электронов» в 2,5 молекулы АТФ, то получение одной молекулы глюкозы – единой межклеточной валюты – нам обходится, в единой клеточной валюте, в 48 АТФ. При ее расщеплении мы получали всего около 30 АТФ. Кажется, разница в курсе покупки и продажи называется «маржа». В данном случае она весьма немаленькая! Около 1/3 энергии теряется за счет КПД биохимических процессов. (В технике это было бы прямо-таки огромное значение КПД.)

Как мы могли заметить, фотосинтез вообще немного напоминает клеточное дыхание, вывернутое наизнанку. Там в ходе замкнутого в цикл взаимопревращения небольших органических веществ некоторые из них расходовались с выделением углекислого газа и восстанавливались коферменты, которые потом окислялись, отдавая электроны в цепь переноса электронов, откуда они в конечном счете поступали к молекуляному кислороду с образованием воды. Здесь процесс начинается с отнятия электронов у воды с образованием молекулярного кислорода, оттуда они (получив энергию от света) поступают в цепь переноса электронов и в конечном счете идут на восстановление коферментов. Восстановленные коферменты и углекислый газ же вступают в циклическое взаимопревращение органических веществ, в которой они синтезируются с затратой АТФ. Даже участки внешнего по отношению к органелле пространства оказались вывернутыми наизнанку и стали внутренним пространством тилакоида.

Заметим, что рассмотренного нами самого ходового варианта фотосинтеза есть один подводный камень. Рибулозобифосфаткарбоксилаза устроена так, что способна превращать рибулозо 1,5 бифосфат не только в желательные нам (т. е. растениям) две молекулы глицерат-3-фосфата, но и осуществлять прямо противоположную вещь – окислять ее при помощи кислорода до одной молекулы глицерат-3-фосфата, молекулы фосфогликолевой кислоты и молекулы углекислого газа (рис. 6.9). Фосфогликолевая кислота затем превращается в гликолевую кислоту и окисляется с помощью кислорода до еще двух молекул углекислого газа (это происходит в специальных органеллах клетки – пироксисомах, которые для этой цели тесно прилегают к пластидам). Вместо фиксации углекислоты в органической молекуле мы, наоборот, производим ее из органической молекулы. Этот процесс, поскольку он состоит в потреблении кислорода с высвобождением углекислого газа, называется фотодыханием, но в отличие от настоящего дыхания при этом не запасается никакой полезной энергии. Желательный процесс – н фиксация углекислого газа – преимущественно катализируется рибулозобифосфаткарбоксилазой при высоких концентрациях углекислого газа и низких – кислорода, а нежелательный – отщепление углекислого газа – наоборот, при низких концентрациях углекислого газа и высоких – кислорода, но именно эти условия и преобладают в атмосфере и клетках мезофилла – растительной ткани, в которой происходит фотосинтез.

В результате за счет фотодыхания теряется до половины только что фиксированного углерода. Чтобы обойти это препятствие, многими неродственными растениями был выработан обходной путь фиксации СО2. Он называется С4-путь. При нем углекислый газ фиксируется дважды – сначала на молекуле фосфоенолпирувата с образованием яблочной кислоты, или малата (у других растений – аспарагиновой кислоты), которая имеет 4 атома углерода (рис. 6.10). Этот процесс катализируется ферментом фосфоенолпируваткарбоксилазой, который не фиксирован на мембране, а растворен в цитоплазме клеток мезофила. Кроме того, он использует не молекулу СО2 как таковую, а ее гидратированную форму - ион угольной кислоты СО3-, находящийся в равновесии с СО2 при его растворении воде. Затем яблочная кислота мигрирует в другие клетки (обкладки сосудистых пучков), где от нее молекула углекислого газа снова отщепляется, и тут же, как ни в чем не бывало, снова фиксируется обычным способом, то есть рибулозобифосфаткарбоксилазой, и вступает в цикл Кальвина. Образующийся при этом пируват возвращается в клетки мезофила, где фосфорилируется с затратой АТФ и преобразуется в фосфоенолпируват, который тем самым регенерирует - и все повторяется по циклу. Весь фокус в том, что в клетках обкладки, куда не проникает так много кислорода, создется повышенная концентрация углекислого газа, чтобы рибулозобифосфаткарбоксилаза катализировала нужную реакцию. Заметим, что, задействовав С4-путь мы вынуждены тратить дополнительную молекулу АТФ для того, чтобы фосфорилировать пируват. Обращую ваше внимание на то, что пируват и яблочная кислота уже встречались нам в цикле Кребса, т. е. для «спасения» темновой стадии фотосинтеза от фотодыхания была задействована какая-то часть этого старого доброго цикла. Типичный пример того, как обстоят дела в биохимии.

Фактически С4-путь есть всего лишь надстройка над С3-путем для обеспечения его эффективности с использованием пространственной неоднородности условий. С3-путь сложился на заре существования жизни, когда в среде еще не было свободного кислорода, и оказался настолько базовой технологией в деле производства органики, что ни одно живое существо не изобрело с тех пор полностью альтернативной технологии. Надо сказать, что С4-путь эффективен при высоких температурах, но неэффективен при низких. Поэтому доля растений, которые им пользуются, повышается к югу.

Есть еще и так называемый «путь толстянковых» – он реализован в семействе толстянковых и кактусовых. Это действительно очень толстые растения, которые растут там, где жарко и мало воды. Экономя воду, в течение жаркого дня они закрывают свои устьица (это отверстия, по которому в листья проникают газы) и поэтому не могут поглощать СО2. Фиксация СО2 у них происходит только ночью, в ходе которой в больших количествах запасается яблочная кислота. Днем, при закрытых устьицах, она декарбоксилируется, и регенерировавший СО2 вступает в цикл Кальвина (хоть он и относится к темновой фазе фотосинтеза). Так что эти растения тоже используют обходной С4-путь, фиксируя углекислый газ дважды, но у них его первичная фиксация разделена с циклом Кальвина не в пространстве (в разных клетках), как в предыдущем варианте, а во времени.

Мы преднамеренно рассматриваем эти тонкости с тем чтобы отметить взаимосвязь биохимии с экологией – наукой о взаимодействиях организмов с внешней средой и друг с другом.

Таким образом, темновая стадия фотосинтеза, т. е. именно синтез органики, существует в нескольких вариантах. Световая же фаза организована одинаково у всех зеленых растений и у цианобактерий (сине-зеленые водоросли). Однако у другого типа фотосинтезирующих бактерий, или фототрофных бактерий, не являющихся цианобактериями, – пурпурных и зеленых бактерий, реализованы и другие типы световой стадии фотосинтеза. Эти два типа фототрофных бактерий различаются структурой своих хлорофиллов и их набором. Причем пурпурный (или коричневый, желтый) цвет пурпурных бактерий обусловлен, как и у высших растений, каротиноидами. Самое интересное, что хлорофилл пурпурных бактерий способен поглощать фотоны и осуществлять фотосинтез в невидимой инфракрасной части спектра. Это очень важно на глубинах, в которые видимый свет не проникает. Внутреннее пространство клеток фототрофных бактерий заполнено фотосинтезирующими мембранными структурами, в некоторых случаях напоминающими тилакоиды.

Общее уравнение фотосинтеза у фототрофных бактерий остается почти тем же самым, что и у зеленых растений:

СО2 + Н2Х = (СН2О) + 2Х.


Только кислород заменен на Х, в данном случае H2X – это не вода, а любое вещество, способное окисляться с передачей электрона в фотосистему и одновременно отдавать протон. Таким веществом может выступать сероводород, тиосульфат, молекулярный водород (в этом случае Х = 0) и органические соединения.

У зеленых и пурпурных бактерий существуют фотосистемы только одного типа. Они могут осуществлять как циклическое фотофосфорилирование, при котором не нужен экзогенный донор электронов и водорода, так и нециклическое, при котором такой донор необходим. Зачем же растениям и цианобактериям потребовалось сопряженная работа двух фотосистем?. Дело в том, что для синтеза органики в цикле Кальвина необходима не только энергия, которая может поступать в виде АТФ, но и восстановленные коферменты НАДФ в качестве донора не только энергии, но и водорода. Для того, чтобы перевести электрон в состояние с настолько высокой энергией, которого будет достаточно для восстановления молекулы НАДФ+ до НАДФ-Н, необходимо последовательное использование двух фотосистем. Энергии двух фотонов также оказалось достаточно для того, чтобы отнять электроны от атома кислорода в составе воды.

Примечательно, что в сопряженной паре двух фотосистем, которую впервые изобрели цианобактерии (сине-зеленые водоросли), фотосистема 1 происходит от фотосистемы зеленых бактерий, а фотосистема 2 – от фотосистемы пурпурных бактерий. Объединив два этих готовых механизма, цианобактерии оказались способны к окислительному фотолизу воды и восстановлению НАДФ+. Бактерии легко обмениваются генетическим материалом, и подобное объединение двух неродственных эволюционных линий для них не является чем-то исключительным. Растения унаследовали спаренную фотосистему от сине-зеленых водорослей. Каким образом – мы увидим это в лекции 8.

Самый распространенный у фототрофных бактерий вариант фотосинтеза – это когда вместо воды используется соединение водорода с элементом из той же группы кислорода – сера. Фототрофные серные бактерии, у которых реализован такой вариант, поглощают сероводород, а выделяют серу.

Серными бактериями является часть пурпурных и почти все зеленые бактерии. Где же такие бактерии должны жить? Следует полагать, что в областях активного вулканизма. Вулканы выделяют много серы, преимущественно в ее соединении с кислородом (сернистый газ SO3) и водородом (сероводород H2S). Да, в кратере активного вулкана особо не поживешь. Однако поблизости от него, а также у подножия потухших вулканов всегда есть места истечения вулканических газов – фумаролы. Обычно они располагаются в трещинах изверженных пород, которым соответствуют углубления поверхности, где соответственно скапливается вода. Эта вода насыщена сероводородом, что и являются благоприятной средой для фотосинтетических серных бактерий.

В какой форме выделяется сера? Все серные фототрофные бактерии окисляют восстановленные соединения серы до минеральной серы – твердого вещества. У одних бактерий сера накапливается внутри клеток в виде твердых частиц. По мере гибели бактерий они выходят в окружающую среду. Другие способны выделять серу сразу в окружающую среду. Многие зеленые и пурпурные серные бактерии способны окислять серу дальше, вплоть до сульфатов, но в качестве субстрата для световой стадии фотосинтеза используется именно сероводород и некоторые другие соединения восстановленной серы с водородом.

Однако фототрофные серобактерии встречаются не только в фумаролах – они могут появляться везде, где только ни встречается сероводород. А он часто образуется при анаэробном разложении органики другими бактериями. В частности, они развиваются, иногда в больших количествах, в придонном слое прудов, озер и морей. Большинство фототрофных бактерий – строгие (облигатные) анаэробы. Однако есть среди них и факультативные аэробы, способные жить присутствии кислорода.

В приведенном уравнении Х может и равняться нулю. Такие фотосинтетические бактерии потребляют чистый молекулярный водород. Реакционный центр фотосистемы отнимает два электрона у атома водорода и превращает его в два протона. Бактерии, использующие в качестве восстановителя водород, менее распространены, чем серные бактерии.

Большинство фототрофных бактерий способны к фотоокислению органических веществ (здесь Х – это органический радикал), но это уже вряд ли можно назвать фотосинтезом, так как органические вещества тут больше тратятся, чем образуются.

Не надо забывать про существование циклического фотофосфорилирования – процесса, при котором не требуются молекулы-доноры ни протонов, ни электронов. Можно предположить, что это была исторически первая действующая схема световой стадии фотосинтеза, так как она самая простая, включающая всего одну фотосистему и не требующая дополнительных восстановителей. В ходе циклического фотофосфорилирования образуется не очень много АТФ, а в классическом его случае НАДФ+ не восстанавливается вовсе (но у некоторых фототрофных бактерий может и восстанавливаться). Наверняка, будучи «изобретено», циклическое фосфорилирование служило только лишь некоторым энергетическим подспорьем своим носителям. Но поскольку весь механизм работает на создании разницы концентрации протонов внутри и вне некоего мембранного пространства, то оказалось удобно усилить этот градиент путем окисления некоего водородсодержащего вещества – молекулярного водорода, воды или сероводорода.

Наконец, достаточно недавно открыта совсем другая система фотосинтеза у галобактерий – микроорганизмов, развивающихся в концентрированных растворах поваренной соли и окрашивающих их в красный цвет. На самом деле они относятся к археобактериям – особым микроорганизмам, которые по многим признакам столь же отдалены от бактерий, как и от эукариот. Окраска обусловлена пигментом ретинальдегидом, который относится к классу каротиноидов. Этот пигмент родствен светочувствительному пигменту, ответственному за наше зрение. Он присоединен к белку бактериопсину на правах кофермента. Этот белок пронизывает мембрану клетки семью альфа-спиралями. Энергия фотона зеленого цвета отсоединяет ретинальдегид от бактериопсина. При этом бактериопсин срабатывает как протонная помпа и проталкивает протон сквозь мембрану. После этого ретинальдегид может реассоциировать с бактериопсином. Мы снова видим тот же принцип – создание градиента протонов и мембранного потенциала для синтеза АТФ. Причем градиент протонов создается самим фотосинтезирующим белком. При этом, как и при циклическом фосфорилировании, никакого дополнительного вещества не восстанавливается. Похоже, это самый простой из существующих в настоящее время путей фотосинтеза.

Какой мы можем сделать вывод? Разные фотосинтетические системы могли изобретаться неоднократно и основываться на разных ключевых пигментах. Рассмотренный нами тандем из двух фотосистем, основанных на хлорофилле, – один из многих вариантов и, по-видимому, наиболее эффективный. Обе фотосистемы были изобретены фототрофными бактериями, объединены цианобактериями (сине-зелеными водорослями) и унаследованы растениями (как именно – мы увидим дальше).

Надо заметить, что не все фототрофные бактерии являются автотрофами в полном смысле этого слова, т. е. способны развиваться на чисто минеральных средах. Большинство из них все же нуждается в тех или иных готовых органических веществах, так что фотофиксация углекислоты является для них всего лишь дополнительным источником органики.

Именно так обстоит дело у галобактерий. Причем у них есть еще одна поразительная особенность – они не способны поглощать сахара и из экзогенной органики фактически «питаются» одними аминокислотами.