О. Э. Костерин общая биология курс лекций
Вид материала | Курс лекций |
- Курс лекций уфа 2006 удк 576. 4 Ббк 28. 073, 2080.69kb.
- Рабочая программа по курсу общая биология 9 класс, 576.48kb.
- В. Т. Уголовное право. Общая часть. Курс лекций, 3067.36kb.
- Б. Л. Международное право и правовая система Российской Федерации. Общая часть: Курс, 5694.73kb.
- Учебно-методический комплекс С. Г. Мамонтов, В. Б. Захаров, Н. И. Сонин «Общая биология»,, 44.75kb.
- Учебно-методический комплекс С. Г. Мамонтов, В. Б. Захаров, Н. И. Сонин «Общая биология»,, 36.54kb.
- Курс Семестр Дисциплина Программа (раздел курса), 14.47kb.
- Курс лекций Барнаул 2001 удк 621. 385 Хмелев В. Н., Обложкина А. Д. Материаловедение, 1417.04kb.
- Бесплатные обучающие программы по биологии www history ru/freebie htm Открытый колледж, 114.73kb.
- Программа по биологии для среднего (полного) общего образования (профильный уровень), 530.44kb.
Как работает фермент? У каждого фермента есть как минимум один активный центр. Обычно это несколько строго определенных боковых радикалов аминокислот, расположенных в строго определенной пространственной ориентации по отношению друг к другу. Если они и располагаются рядом в пространстве, то совершенно не обязательно, что находятся рядом в полипептидной цепи, и, как правило, это совсем не так. Ориентация радикалов активного центра достигается укладкой всей белковой молекулы, так что часто длинные участки полипептидной цепи с более или менее жестко фиксированной последовательностью служат только для правильной ориентации нескольких строго определенных аминокислотных радикалов. Радикалы активного центра расположены так, что молекула субстрата обладает к ним сродством, образно говоря – подходит как ключ к замку. Как правило, это притяжение между определенными атомами субстрата и определенными атомами радикалов активного центра. Первая стадия ферментативной реакции состоит в связывании молекулы субстрата с активным центром. Обычно в результате связывания несколько изменяется конформация как фермента, так и субстрата, т. е. чисто механически меняется характер пространственной укладки их молекул. При этом определенные химические группы оказываются в таком взаимном расположении, что они должны прореагировать друг с другом, – это как раз и происходит. После такого химического превращения продукт (продукты) реакции освобождают активный центр. Таким образом, каждая ферментная реакция состоит из трех частей – формирование фермент-субстратного комплекса, химическое превращение субстрата в продукт и диссоциация продуктов и фермента. Часто реакция образования комплекса вполне обратима, а реакции превращения и диссоциации необратимы, но многие ферментативные реакции обратимы полностью.
Если субстратов несколько, то реакция протекает сложнее, но по тем же самым принципам.
Активный центр многих ферментов содержит вещества, которые не относятся к белкам. Они присоединяются к белку (обратимо или необратимо) уже после их синтеза. Если такие вспомогательные вещества пришиты к ферменту ковалентно, они называются простетическими группами, если ассоциированы обратимо (за счет ионных связей, к примеру) – кофакторами, или коферментами. Рассмотренный выше гем у гемоглобина – это простетическая группа. Коферментами является большинство наших витаминов. Наш организм (в отличие от растительного и бактериального) не умеет их делать сам и вынужден получать с пищей. Но их много и не надо, так как в ходе ферментативных реакций витамины не расходуются.
Часть ферментативных реакций идет без затраты энергии. Это означает, что реакция переводит молекулы из менее энергетически выгодного в более энергетически выгодное состояние или же состояния до и после реакции энергетически эквивалентны. Однако самопроизвольно такая реакция не идет или идет крайне медленно из-за кинетических ограничений – вероятность, что молекулы субстрата случайно сориентируются таким образом и примут такую конформацию, что смогут прореагировать, необыкновенно низка (вплоть до того, что это практически невозможно). На самом деле формирование фермент-субстратного комплекса требует некоторых затрат энергии. Однако этот энергетический барьер (количество энергии, которое нужно затратить на производство комплекса) невелик и не превосходит энергию, выделяющуюся в результате реакции, а необходимая энергия поставляется простым тепловым движением молекул.
Однако очень многие химические реакции идут с затратами энергии, т. е. переводят вещества из термодинамически более выгодных в менее выгодные состояния. Это означает, что для требуемого превращения веществ необходимо затратить работу, причем часто это чисто механическая работа по перемещению определенных химических групп в реакционноспособное состояние. Например, против электростатических сил или против сил упругости, возникающих при деформации той оптимальной конфигурации молекулы, которая определяется задействованными в ней химических связей. Энергия для этой работы должна быть привнесена в реакцию извне. Универсальным энергоносителем и конвертируемой валютой в биохимических процессах является так называемая АТФ (аденозинтрифосфат) – о ней несколько позже. Так вот, ферменты, осуществляющие реакцию с затратой энергии, имеют еще и специальный энергетический центр, который связывается с молекулой АТФ. Связав молекулу АТФ, активный центр отщепляет от нее одну или две фосфатные группы, а энергия, запасенная в связях фосфора с кислородом, идет сначала на изменение конформации молекулы фермента и его активного центра и как следствие этого изменения – на осуществление работы по превращению субстрата в продукт. Следовательно, такие ферменты катализируют сразу две сопряженные реакции – отщепление фосфатных групп от АТФ и свою специфическую реакцию, что сопровождается переносом энергии от первой реакции ко второй. Эти реакции согласованы, т. е. происходят только когда оба активных центра связаны с соответствующими субстратами.
Наконец, у многих ферментов есть еще один центр, он связывается с веществом – конечным продуктом цепочки реакций, в которых данный фермент участвует. Связывание продукта меняет конформацию фермента и делает его нереакционноспособным, т. е. он ингибирует (подавляет) фермент. Таким образом происходит регулировка всего процесса по принципу отрицательной обратной связи – избыток конечного продукта тормозит реакцию на каких-то ранних стадиях.
Ферменты принято называть по названию субстрата и реакции, которую они осуществляют, с прибавлением суффикса «аза». Поэтому где встретите какую-нибудь «Азу», значит, это фермент. По характеру катализируемых реакций ферменты можно разделить на шесть групп:
– гидролазы осуществляют гидролиз;
– лигазы сшивают две молекулы в одну;
– трансферазы переносят химические группы с одной молекулы на другую;
– лиазы отщепляют или присоединяют небольшие группы атомов (в частности, фосфорилазы отщепляют фосфатную группу, а киназы присоединяют);
– изомеразы осуществляют перестройки внутри молекул.
– оксидоредуктазы переносят электроны, окисляя один субстрат и восстанавливая другой;
Эффективность ферментов как молекулярных устройств поразительна. Во всех учебниках приводится скорость работы фермента уреазы, который выделяется бактериями и расщепляет мочевину на углекислый газ и аммиак. Одна молекула фермента за секунду расщепляет 30 000 молекул мочевины. Самопроизвольное расщепление такого количества молекул при тех же «нормальных условиях» потребовало бы 3 млн лет. Таким образом, мы получаем представление о том, что такое биологический катализатор и как именно данный фермент ускоряет реакцию.
К ферментам близки белки-рецепторы – белки, которые связываются с сигнальными веществами, например гормонами. Гормоны передают через кровь некий химический сигнал определенным клеткам. На поверхности этих клеток есть белки-рецепторы, которые связываются с гормоном и передают сигнал в клетку. Как и в случае с ферментом, здесь имеет место специфическое связывание субстрата с активным центром рецептора, что влечет за собой определенные изменения в рецепторе химического, электрического или механического характера, посредством которых сигнал передается дальше. Рецепторы участвуют в передаче возбуждения через синапсы – места контакта нервных клеток. Они связываются с медиаторами – веществами, передающими сигнал между клетками. Таким образом, нервный импульс, будучи в пределах одной нервной клетки электрохимическим явлением, передается на следующую клетку через чисто химического посредника. Бывают, однако, рецепторы не только к химическим сигналам, но и к физическим – свету, механическому напряжению. На них основан механизм действия органов чувств.
Иммунная система человека основана на белках, которые необратимо связываются с чужеродными (иногда, к сожалению, и своими тоже) веществами, переводя их тем самым в неактивную форму. В основе их действия, как и в случае ферментов и рецепторов, лежит специфическое химическое узнавание и связывание. Принцип их действия тот же самый, но несколько проще – отсутствует момент химической трансформации субстрата, так как целью здесь является только его связывание.
Поговорим еще о ферментах, имея в виду, что многое будет справедливо и для рецепторов. Работа каждого фермента рассчитана на определенные условия. Прежде всего, рН среды. Чтобы фермент имел рабочую конформацию, его полярные аминокислотные радикалы должны быть определенным образом заряжены. К примеру, если фермент рассчитан на нормальную рН, а его поместить в кислую, где много положительно заряженных ионов водорода, то остатки аспарагиновой и глутаминовой кислот потеряют свой отрицательный заряд и конформация молекулы изменится. Однако некоторые ферменты, допустим фермент пепсин, расщепляющий белки у нас в желудке, рассчитаны на крайне кислую среду. Крайне важный фактор – температура. Существует закон Аррениуса, согласно которому увеличение температуры на 10о С ускоряет все химические процессы приблизительно в 2 раза. В принципе, ферментативные реакции подчиняются этому закону. Однако «правильная» структура фермента обеспечивается в том числе и довольно слабыми связями. В частности, очень велика роль водородных связей. При температуре выше «расчетной» эти связи начинают разрушаться – белок денатурирует. Таким образом, у каждого фермента существует температурный оптимум активности и температурный диапазон, часто достаточно узкий, в котором реакция в принципе возможна. У некоторых археобактерий, живущих в горячих источниках на дне океана (где еще и давление высокое), этот оптимум может находиться в районе 120 оС.
Таким образом, ферменты – это специализированные и в высшей степени эффективные станки биологического конвейера, ответственные каждый за какую-то одну операцию. Работа конвейера тонко налажена, а результаты – поражают воображение. Достаточно вам посмотреть друг на друга и подумать, как такое возможно было сделать. И вот, к примеру, Вы – диверсант и перед Вами стоит задача сорвать данное производство. Как бы Вы стали это делать? Нет, есть способы похитрее, чем, подобно луддитам, разрушать их тотально (кстати, способ весьма трудоемкий). Все помнят анекдот про суровых русских мужиков? Которые подсовывали лом в японскую пилораму? Такой же лом можно подсунуть и в фермент. Это должно быть вещество, настолько похожее на субстрат, чтобы связаться с активным центром и в то же время достаточно на него не похожее, чтобы фермент не мог с ним ничего сделать. Тогда процесс заканчивается образованием фермент-субстратного комплекса, с которым далее ничего не происходит. Если такого вещества достаточно, чтобы блокировать большинство молекул фермента, ферментативная реакция останавливается. Это называется конкурентное ингибирование. Именно такими псевдосубстратами и является большинство ядов.
В 1930–1940-е гг. было осуществлено замечательное издание «Флора Казахстана». Его редакторы в соответствии с тогдашней идеологией заботились о том, чтобы максимально охарактеризовать хозяйственное значение каждого растения. Читаем про аконит джунгарский. Хозяйственное значение: «Применяется в качестве отравы для волков». Читаем про аконит анторовидный. Хозяйственное значение: «Применяется как противоядие при отравлении аконитом джунгарским». Токсин аконита – это в основном алкалоид аконитин. Он связывается с белком, выполняющим функцию натрий-калиевого насоса, т. е. регулирующим концентрацию этих ионов внутри и вне клетки, и тем самым блокирует передачу возбуждения в мышцах. И вот смотрите: один аконит является противоядием от другого. Ясно, что речь идет о родственных веществах. Одно из них – сильнейший токсин. Другое явно более слабый токсин – раз противоядие, т. е. его связывание с белком гораздо слабее. Но можно предположить, что если его принять много, то его молекулы способны вытеснять молекулы предыдущего из того центра белка, с которым они связывались, тем самым его освобождая.
Ферментную машину можно не только испортить. Она может сойти бракованной с конвейера. Во всех учебниках приводится классический пример серповидноклеточной анемии – наследственной болезни, распространенной в Африке. У людей с этим заболеванием эритроциты имеют форму не двояковогнутой линзы, а неправильного полумесяца. Их прохождение по капиллярам затруднено, они хрупкие и они плохо выполняют функцию транспорта кислорода. Как выяснилось, болезнь связана с одной-единственной аминокислотной заменой в одном из глобинов - полипептидов, формирующих гемоглобин, а именно в шестой с конца позиции остаток отрицательно заряженной глутаминовой кислоты заменен на неполярного остаток валина. В результате при недостатке кислорода не связанные с ним молекулы гемоглобина слипаются в цепочки, что и ведет ко всем печальным последствиям.
Понятно, что замена одной аминокислоты в таком важном месте, как активный центр, полностью блокирует функцию белка. В то же время замена где-то в боковой петле может вообще не иметь последствий – допустим, если важна только длина данной части молекулы. Такие функциональные ограничения, строго дифференцированные по длине полипептидной цепи, оказывают сильное влияние на эволюцию белков, которая, несмотря на ограничения, породила все многообразие белков в отдельно взятом организме, равно как у разных организмов. Разным белкам и разным частям одного белка позволено изменяться с разной скоростью и в разных пределах.
Приведем еще один (необычный) пример испорченного белка. Он имеет интригующую историю, включающую целых две Нобелевские премии, но не будем описывать всю интригу, а приведем сразу результат. Возможно, вы помните, как в связи со случаями так называемого коровьего бешенства, передававшегося человеку, в континентальной Европе была запрещена продажа говядины из Британии. Суть в том, что у некоторых коров возникала смертельная болезнь, сопровождавшаяся расстройством координации движений. Произошло несколько случаев заражения людей, предположительно употреблявших в пищу мясо больных коров. Выяснилось, что коровы заполучили ее через костную муку, сделанную из овечьих костей, которой их подкармливали. Овцы страдают такой же болезнью под названием «скрепи» (однако запрещения употребления баранины людьми не наблюдалось. Наверное, в этой истории было больше политики, чем заботы о здоровье). К болезням той же этиологии относятся два синдрома человека, характеризующиеся дегенерацией либо коры головного мозга, либо мозжечка и спинного мозга (со всеми вытекающими последствиями), а кроме того, так называемая смертельная семейная бессонница. И сюда же относится болезнь куру, распространенная среди каннибалов Новой Гвинеи, которая сопровождается дегенерацией мозжечка и потерей координации движений и передается с мозгом съеденных людей. Эти болезни характеризуются медленным, но совершенно неотвратимым течением с обязательным смертельным исходом. Одно время казалось, что болезнь вызывает паразит чисто белковой природы, который умеет воспроизводить себя без участия нуклеиновых кислот – так называемый прион. Однако выяснилось, что прион – это белок, который не может воспроизводить себя, но способен передавать свое состояние – особую конформацию. В норме этот белок находится на поверхности нервных синапсов (соединений нервных клеток, через которые передается импульс). У этого белка есть правильная и неправильная конформации. (Как видите, первичная структура не всегда определяет конформацию белка однозначно!) При синтезе в клетке он принимает правильную конформацию. Однако есть и неправильная конформация, при которой он не сидит на мембране, а накапливается внутри клетки и блокирует ее работу. Оказалось, что неправильная конформация весьма устойчива к термической обработке и не подвержена действию ферментов, расщепляющих белки в желудочно-кишечном тракте, из которого такая молекула может попасть в организм. Неправильная конформация «заразна», т. е. если откуда-то берется молекула с неправильной конформацией, то эта конформация постепенно передается другим молекулам. В результате нервные клетки одна за другой выходят из строя. Людоеды получают такой «подарок» с пищей. Те, кто ели «заразную» говядину, – тоже. Однако от приона другого вида неправильная конформация передается с трудом. Откуда вообще берется изначальная «зараза» – молекула с неправильной конформацией? Оказывается, как и в случае гемоглобина при серповидно-клеточной анемии, все дело в наследственной изменчивости этого белка. Иногда прионовые болезни возникают (а они возникают уже в зрелом возрасте) у родственников, т. е. явно наследуются. Определенное изменение первичной структуры этого белка (одним словом, мутация) делает молекулу предрасположенной к неправильной конформации, которую она может принять самопроизвольно. Такого человека, корову или овцу есть не рекомендуется. Этот пример показывает, как важна конформация белка, как важна изменчивость его первичной структуры и какие подводные камни может таить в себе людоедство.
В заключение следует обратить внимание на одну характерную особенность белкового биологического конструктора. Упоминавшийся выше гигантский белок титин состоит из нескольких сотен повторенных без особого порядка участков, последовательность которых похожа на участки двух других белков: иммуноглобулина, обеспечивающего иммунитет (размер участка – около 90 остатков) и фибронектина – структурного белка, ответственного за связывание клеток с внеклеточным белковым каркасом – тем же коллагеном, принимающим участие в свертывании крови и т. д. (размер участка – немногим больше 40 остатков). Получается, что белок, обеспечивающий упругость мышц, наполовину состоит из кусочков белка, обеспечивающего иммунитет! Другими словами, при его «конструировании» был использован готовый фрагмент, механические свойства которого оказались подходящими, и не важно, что он первоначально служил совсем для другого.
Имеются и более поразительные примеры. Вы знаете, что в глазу есть эластичная линза – хрусталик. Она тоже делается из специальных водорастворимых белков – кристаллинов. Технические требования к ним – это определенные коэффициент преломления и механические свойства. Выяснилось, что все кристаллины представляют собой либо те или иные работающие ферменты, либо белки, явно произошедшие от ферментов. Дельта кристаллины, присутствующие у птиц и крокодилов, представляют собой фермент аргининсукцинатлиазу, причем молекула сохраняет свою ферментативную активность, совершенно не нужную в хрусталике. Птичий тау-кристаллин одновременно является ферментом альфа-энолазой в других тканях. Эпсилон-кристаллин представляет собой активную лактат-дегидрогеназу. Омега-кристаллины головоногих моллюсков возникли из альдегид-дегидрогеназы (запоминать названия ферментов не нужно, они приведены здесь для документальности и чтобы еще раз подчеркнуть умопостигаемую сложность предмета). Группа, исследующая происхождение кристаллинов, применяет термин «рекрутирование» – кристаллины рекрутируются из ферментов. Таким образом, сложнейшие биохимические машины, предназначенные для осуществления тонких биохимических реакций, использованы здесь как «пушечное мясо» – просто как вещества с определенными оптическими и механическими свойствами.
Поскольку конструкция живых организмов никем не проектировалась специально, а все возникло из закрепления случайно возникших жизнеспособных вариантов, биологи постоянно сталкиваются с конструктивными решениями, полученными по принципу Тришкиного кафтана. Но так как система сложная и у кафтана имеется огромное количество рукавов, удачное решение всегда можно найти и по такому принципу.
Лекция 4. НУКЛЕИНОВЫЕ КИСЛОТЫ
Мир нуклеиновых кислот довольно противоречив. С одной стороны, структура ДНК являет нам апофеоз красоты и логики, так что один из многих (подчеркнем это) первооткрывателей этой структуры Френсис Крик воскликнул: «Это слишком красиво, чтобы не быть правдой». По этой самой причине опубликование даже одной только неподтвержденной модели вызвало катарсис у всех без исключения биохимиков и в общем-то биологов, после чего молекулярная биология стала развиваться лавинообразно, причем этот взрыв еще не закончился. С другой стороны, в клетках, похоже, существует некая «теневая экономика» коротких молекул РНК, до недавнего времени ускользавших от внимания ученых. Роль их, судя по всему, огромна, но об этом стали догадываться только сейчас. И наконец, РНК выступает там и здесь в разных и неожиданных ролях, что позволяет ученым заподозрить, что мы имеем дело с остатками былого величия, в основном вытесненного простой и могучей белковой химией. Принцип работы нуклеиновых кислот как носителей информации очень хорошо ложится на ум, особенно после изобретения магнитофонов и компьютеров (но больше – первого), само же их строение выглядит несколько, скажем так, вычурным. Тем не менее, именно с этих молекул началась жизнь в том смысле, в котором мы определили ее на первой лекции.
Нуклеиновые кислоты построены из трех элементов, имеющих довольно мало общего между собой: гетероциклические азотистые основания; пятичленный сахар рибоза или дезоксирибоза; фосфорная кислота. Кислотами они являются из-за остатков фосфорной кислоты.
Рассмотрим сначала азотистые основания. Они представляют собой молекулы, включающие циклы с чередующимися двойными связями, образованные атомами углерода и азота. Азотистые основания делятся на два типа (рис. 4.1):
1) производные пурина – вещества, состоящие из двух сконденсированных (смежных) циклов – шести- и пятичленного, для простоты их иногда называют «пурины». Пурин родствен таким веществам, как никотиновая кислота (ее производные чрезвычайно важны в энергетике клетки), кофеин и мочевая кислота (продукт азотистого обмена, выделяемый за пределы организма птицами, насекомыми и прочими организмами, которые экономят воду на выделении);
2) производные пиримидина – одинарного шестичленного цикла.
В живых системах встречается два пурина – аденин и гуанин, и три пиримидина – цитозин, тимин и урацил.
В нуклеиновых кислотах азотистые основания через определенный в каждом случае атом азота соединены с первым атомом углерода циклической пентозы – рибозы (в РНК) или дезоксирибозоы (в ДНК). Пентоза, в свою очередь, своим пятым (находящимся вне цикла) атомом углерода соединена с остатком фосфорной кислоты сложноэфирной связью. Так образуется