О. Э. Костерин общая биология курс лекций

Вид материалаКурс лекций

Содержание


История эволюции биологических процессов обмена вещества и энергии на Земле
Изобретение гликолиза
Изобретение протонного насоса
Изобретение цепи переноса электронов
Изобретение АТФ-синтетазы
Изобретение фотосинтеза и фотосистемы 1
Изобретение фотолиза воды.
Изобретение дыхания.
Появление митохондрий и пластид
Клеточная стенка, ядро
Подобный материал:
1   ...   4   5   6   7   8   9   10   11   ...   26

Хемосинтез


Синтез органики может происходить не только за счет солнечного света, но и за счет ресурса, освоение которого не требует такой продвинутой антенной техники, как фотосистемы на основе пигментов сложного строения, – за счет энергии, запасенной в химических связях неорганических веществ. Это так называемый хемосинтез.

Организмы, способные к хемосинтезу и не нуждающиеся во внешнем источнике органических веществ, называются хемоавтотрофы. Хемоавтотрофы встречаются только среди бактерий, причем в современном мире разнообразие хемосинтетических бактерий невелико. Они были открыты в конце XIX в. отечественным микробиологом С. Н. Виноградским. Однако, как и в случае с зелеными и пурпурными бактериями, многие бактерии, способные к хемосинтезу, все же нуждаются в определенных органических веществах и к автотрофам формально отнесены быть не могут. В то же время понятно, что принципиальна сама способность к хемосинтезу, которая может служить основой для становления хемоавтотрофии.

Рассматривая варианты бактериального фотосинтеза, мы с вами коснулись вулканизма, имеющего прямое отношение к данной теме. И действительно, те же самые вещества, которые фототрофные бактерии использовали в качестве доноров электронов в ходе фотосинтеза, могут быть использованы хемоавтотрофами для получения энергии путем их окисления без привлечения энергии света. Хемоавтотрофные бактерии могут использовать в качестве источника энергии, т. е. в качестве восстановителей:

1) соединения серы;

2) водород;

3) соединения азота;

4) соединения железа;

и предположительно:

5) карбонат марганца MnCO3 до оксида марганца Mn2O3;

6) оксид трехвалентной сурьмы Sb2O3, окисляя его до пятивалентной Sb2O5.

Так называемые бесцветные серные бактерии развиваются в сероводородных источниках, в том числе и горячих (некоторые имеют температурный оптимум около 50 оС), и даже в источниках, представляющих собой слабую (вплоть до однонормальной, рН = 0) серную кислоту или насыщенный раствор поваренной соли. Некоторые из этих бактерий встречаются в почве, в месторождениях серы и в некоторых разрушающихся горных породах (способствуя их так называемому сернокислому выветриванию). Естественно, к разным условиям приспособлены разные виды этих бактерий. Многие из них не только способны окислять одно какое-то соединение серы, а последовательно повышать ее степень окисления, т. е. окислять сероводород (H2S) до молекулярной серы (S), а молекулярную серу – до тиосульфата (S2O3-), тиосульфат – до сульфита (SO3-), сульфит – до сульфата, т. е. серной кислоты (SO4-). При этом степень окисления серы увеличивается от –2 до +6. Немудрено, что для хемосинтеза выбран такой элемент, как сера, степень окисления которого способна варьировать в столь широких пределах.

Некоторые способны окислять серу даже из нерастворимых сульфидов тяжелых металлов. Такие бактерии используются для разработки обедненных месторождений этих металлов. Воду с бактериями пропускают через измельченную руду, представленную сульфидами, и собирают ее, обогащенную сульфатами соответствующих металлов.

Как мы знаем, все, что нам нужно от любых источников энергии, это получить АТФ. Получение АТФ на основе восстановления серы может идти двумя путями.

Самый поразительный путь – почти прямой. Он реализуется как минимум при окислении сульфита. Сульфит взаимодействует с АМФ с образованием аденозинфосфосульфата (АФС). Именно в этой реакции степень окисления серы меняется с +4 до +6, причем высвободившиеся электроны передаются в цепь переноса электронов для окислительного фосфорилирования. Молекула АФС, в свою очередь, заменяет сульфатную группу на остаток свободной фосфорной кислоты из раствора с образованием АДФ, тогда как сульфат высвобождается в раствор. (На всякий случай напомним, что каждая такая реакция катализируется специальным ферментом.) АДФ уже содержит одну макроэргическую связь. Фермент аденилаткиназа из двух молекул АДФ делает одну молекулу АТФ и одну АМФ. Мы видим здесь простейший из всех рассмотренных нами путей синтеза АТФ – всего в три этапа. Фермент катализирует соединение непосредственного источника энергии – соединения серы – с АМФ, а следующий фермент – замещение остатков одной кислоты на другую с образованием АТФ. Отнятые у серы электроны могут направляться в цепь переноса и без фосфорилирования АМФ – в этом случае окисление серы производится непосредственно одним из цитохромов.

Как видим, в обоих процессах задействовано окислительное фосфорилирование, требующее свободного кислорода. Поэтому бактерии-хемосинтетики – это, как правило облигатные аэробы.

Данный пример нам показывает, что: 1) пути получения АТФ при хемосинтезе отличаются разнообразием и 2) среди них есть и очень простые; возможно, они эволюционно возникли самыми первыми.

Кстати, КПД хемосинтеза на основе серы невысок – при нем используется от 3 до 30 % энергии, заключающейся в восстановленных формах серы.

Чтобы окислять серу и извлекать из одного этого энергию без привлечения ее дополнительных источников, современные хемосинтетические бактерии нуждаются в сильном окислителе, и им является кислород. Это или молекулярный кислород воздуха, или кислород нитратов (NO3-). Как вы знаете, нитраты, т. е. селитра, очень хороший окислитель и используется при изготовлении пороха.

Бактерии, использующие в качестве единственного источника энергии окисление водорода, – водородные бактерии, живут в почве и водоемах. Окисление водорода происходит через цитохромы с использованием цепи переноса электронов, т. е. с использованием молекулярного кислорода как акцептора электронов. Таким образом, для жизни этих бактерий необходимо присутствие в среде не только водорода, но и кислорода – фактически они живут на гремучей смеси и используют энергию, которая могла бы выделиться в результате сгорания водорода. Это довольно большая энергия, и используют они ее достаточно эффективно – до 30 %. Общее уравнение водородного хемосинтеза таково, что на шесть молекул окисленного водорода приходится одна фиксированная в синтезируемых органических соединениях молекула СО2.

Любопытно, что водород, используемый водородными бактериями, выделяется в качестве побочного продукта жизнедеятельности другими бактериями – обычными гетеротрофными, которые используют в качестве источника энергии готовую органику. Одновременное присутствие водорода и кислорода – опять-таки очень редкая экологическая ситуация. Возможно, именно поэтому все водородные бактерии могут усваивать уже готовые биологические органические вещества

Хемосинтез на основе азота осуществляют нитрифицирующие бактерии. Как вы знаете, азот, как и сера, относится к элементам, легко меняющим степень окисления. Имеется две группы нитрифицирующих бактерий. Одна восстанавливает аммоний (NH4+) до нитритов (NO2-), при этом степень окисления азота меняется с –3 до +3. Вторая группа окисляет нитриты до нитратов (NO3-), повышая степень окисления азота до +5. Все нитрифицирующие бактерии – облигатные аэробы. Электроны от азота передаются в цепь переноса электронов посредством флавопротеина (содержащего флавин) либо через цитохромы.

Имеются также бактерии, способные окислять двухвалентное железо до трехвалентного. Из них способность к автотрофному существованию доказана только для нескольких видов, являющихся одновременно серными бактериями и способных окислять молекулярную серу и различные ее соединения с кислородом и тяжелыми металлами. Общее уравнение хемосинтеза в этом случае выглядит так:


4Fe2+SO4 + H2SO4 +O2 = 2Fe3+2(SO4)3 + 2H2O.


Такие бактерии, живущие в болотах, образуют болотные месторождения железа.

Все рассмотренные хемоавтотрофы получают энергию путем окисления неорганических веществ и запасают ее в виде молекул АТФ. Энергия, запасенная в АТФ, используется ими для фиксации углекислоты и построения биологических органических молекул. Для этого все они используют уже рассмотренный нами цикл Кальвина. Вспомним, однако, что в этом цикле, помимо АТФ, необходим еще и НАДФ-Н. В то же время энергетического выигрыша от окисления всех используемых для хемосинтеза веществ недостаточно для восстановления НАДФ-Н из НАДФ+. Поэтому его восстановление идет в виде отдельного процесса с затратой части АТФ, полученной в ходе хемосинтеза.

Итак, хемосинтез представляет заманчивую возможность использования энергии неорганических соединений элементов, которые легко меняют степень своего окисления, для получения АТФ и синтеза органических веществ путем фиксации углекислого газа. Отметим, однако, четыре обстоятельства.

1. Большинство известных случев хемоавтотрофии требуют свободного кислорода в качестве окислителя, в редких случаях он замещается кислородом нитратов. А как вы помните, кислород в атмосфере является продуктом фотосинтеза. Все это означает, что с точки зрения геохимического круговорота веществ хемосинтез на Земле сейчас вторичен по отношению к фотосинтезу.

2. Такие вещества, как аммиак, сероводород и водород часто сами образуются в результате жизнедеятельности бактерий, правда совсем других, которые используют для получения энергии и построения вещества своего тела такой эффективный ресурс, как уже готовая органика. Таким образом, во многих случаях за счет хемоавтотрофов общее количество органики не прирастает. Они просто являются элементами общей цепи ее расщепления, включающей множество микроорганизмов – просто на этом этапе добавляется локальный ресинтез органики из СО2 за счет энергии каких-то промежуточных соединений, образованных в процессе ее глобального разложения.

3. Преобладающий в настоящее время на планете тип хемосинтеза - окисление сероводорода вулканического происхождения.

4. Кислород воздуха легко окисляет сероводород «самостоятельно», без помощи микроорганизмов. Поэтому эти два газа почти не встречаются вместе. К примеру, глубинные слои почвы характеризуются восстановительной средой, там есть метан и сероводород, но нет кислорода. Восстановительная среда сменяется окислительной, где присутствует кислород, но нет сероводорода – в очень узком слое, здесь есть оба газа – буквально несколько миллиметров. Именно и только там и могут развиваться почвенные хемосинтетические серобактерии. (Еще более экзотично одновременное присутствие кислорода и водорода.)

Однако на планете есть места, где оба газа – сероводород и кислород – присутствуют в достаточных концентрациях одновременно. И даже в настоящий момент большое количество органики образуется там в результате хемосинтеза. Давайте выясним, откуда вообще берется вулканизм. Вы слышали о дрейфе континентов? Кто не слышал, вспомните карту мира и обратите внимание на то, что, если Африку сдвинуть на запад, ее очертания очень хорошо впишутся в берега обеих Америк. Да, континенты медленно плывут! Африка и Америки раскололись и плывут друг от друга. Азия и Северная Америка плывут навстречу друг другу. Индия относительно недавно откололась от Африки, рванулась на северо-восток и врезалась в Азию. В результате в месте столкновения выросли Гималаи и Тибет, а недавнее землетрясение на Алтае произошло оттого, что она все еще не может остановиться. Земная кора под океанами гораздо тоньше, чем под континентами. Континенты плавают по ней как льдины. Когда континенты наступают на океан, как, например, Евразия и Америка на Тихий, происходит субдукция – континенты подминают под себя земную кору, она погружается в мантию и расплавляется. Именно в зонах субдукции – например по всей периферии Тихого океана – имеет место вулканизм, который достаточно легко наблюдать в виде вулканов и горячих источников, богатых серой, в которных мы находим хемосинтезирующие бактерии. Там же, где континенты расходятся, а океан раскрывается, как, например, Атлантический, континенты растаскивают океаническую земную кору за собой. В результате посередине океана имеется трещина – рифтовая зона, по которой из мантии поднимается расплавленная магма, застывает и образует новую океаническую кору. Это область скрытого от наших глаз, но гораздо более мощного вулканизма. По сторонам трещины вырастают подводные вулканические горы, а сама трещина все же выглядит как впадина между двумя горными цепями. Это называется – срединный океанический хребет. Здесь имеется множество истечений вулканических газов, богатых соединениями серы и углекислым газом. Они получили название черных курильщиков. Почему курильщиков и почему черных? Соединения серы с металлами – сульфиды – как правило, окрашены в черный цвет. (Кстати, кто знает, почему море Черное? Потому что на определенной глубине его вода насыщена сероводородом и все металлические предметы там чернеют.) Источники рифтовой зоны выбрасывают очень много сульфидов, растворенных и взвешенных в горячей воде – такие струи отдаленно напоминают клубы черного дыма, а выпавшие в осадок сульфиды образуют вокруг источников причудливые постройки высотой в несколько десятков метров.

В Черном море не идет активный хемосинтез, так как на той глубине практически нет кислорода – все это потому, что его конфигурация способствует застою воды. А в рифтовых зонах океанов вода подвижна и кислород есть. Немаловажно, что черный курильщик подогревает воду и тем приводит ее в движение, способствующее газообмену. Этот ресурс не проходит незамеченным для морских обитателей, поэтому вокруг черных курильщиков формируются процветающие сообщества морских организмов. Их основу составляют хемосинтетические бактерии, которые покрывают эти самые сульфидовые постройки черных курильщиков ровным слоем. Там идет интенсивнейший хемосинтез, в ходе которого большие количества углекислого газа фиксируются и переходят в биологические органические молекулы.

В рифтовой зоне Тихого океана, на периферии черных курильщиков располагаются колонии совершенно поразительных животных – вестиментифер. Их открыли всего около 20 лет назад, сейчас известно десятка два видов. Они представляют собой нечто вроде червей длиной от 15–30 см до 2,5 м, живущих в трубках, через открытый конец которых высовывается венец алых щупалец (рис. 6.11). Они принадлежат к особому семейству многощетинковых кольчатых червей – сибаглидам, хотя весьма и отичаются от остальных кольчатых червей по строению тела; это семейство раньше даже считались отдельным типом – погонофорами.

У них хорошо развита кровеносная система, но нет ни рта, ни кишечника. Вдоль тела у них проходит так называемая трофосома (по-гречески трофос – питание, сома – тело) – тяж, состоящий из особых клеток и кровеносных сосудов. Внутри клеток находятся хемосинтезирующие серные бактерии – только одного вида (из около двухсот во внешней среде курильщиков). Они окисляют сероводород до серной кислоты (которая нейтрализуется карбонатами). Вестиментиферы самопереваривают часть этих своих клеток и таким образом питаются.

Спрашивается, а как сероводород попадает в трофосому? Он транспортируется туда гемоглобином крови вместе с кислородом. Кислород связывается с гемом, сероводород – с белковой частью гемоглобина. Красные (от гемоглобина) щупальца служат жабрами – они поглощают кислород и сероводород. Таким образом, вестиментиферы существуют за счет симбиоза – взаимовыгодного сожительства с организмами другого типа. И строят свое тело из органики, полученной в результате хемосинтеза (но с использованием хемосинтетического кислорода). В колониях вестиментифер за счет хемосинтетической органики (в основном просто питаясь вестиментиферами) живут крабы, креветки, усоногие ракообразные, двустворчатые моллюски, осьминоги, рыбы и т. п.

И заметьте, никаких растений! Только бактерии и животные. Напомним, что на этих глубинах солнечный свет полностью отсутствует.

Все это соседствует с практически безжизненными океанскими глубинами, куда почти не достигает фотосинтетическая органика, поступающая с океанской поверхности, поскольку почти вся она утилизируется микроорганизмами по дороге. Там донная биомасса составляет всего 0,1–0,2 г / м2 (оценка плотности биомассы возле курильщиков мне не встречалась, но она на несколько порядков больше).

Такое буйство жизни возможно потому, что за счет конвекционного перемешивания в черных курильщиках имеется довольно широкая зона вод, в которых присутствует одновременно и сероводород, и кислород, тогда как зона одновременного присутствия этих газов в почве составляет всего несколько миллиметров.

Геологи давно находили загадочные трубки в месторождениях серебряных, медных и цинковых руд, которые образовались 350 млн лет назад. Месторождения формировались из сульфидов рифтовой зоны. Вестиментиферы тогда уже были. Для сравнения: динозавры вымерли 65 млн лет назад.

Сделаем одно отступление. Несколько раньше вестиментифер были открыты их родственники – погонофоры – в основном глубоководные морские организмы схожего строения. Вместо трофосомы у них имеется так называемый срединный канал – нечто вроде закрытого с обоих концов кишечника. В нем тоже живут симбиотические бактериии, но не хемосинтетические, а метанотрофные. Они «питаются» метаном (CH4). А что мы знаем о метане? Это один из основных компонентов природного газа. Судя по всему, погонофоры живут в районах расположения подводных месорождений нефти и газа и могут на них указывать.

Что характерно, в рифтовой зоне Атлантического океана вестиментифер нет. Скорее всего они просто не успели туда попасть за время существования этого океана. Зато там, как и в Тихом океане, имеются:

1) креветки, у которых сероводородные симбионтные бактерии живут на поверхности ротовых конечностей;

2) двустворчатые моллюски, у которых они живут в жабрах;

3) ярко-красные многощетинковые черви, у которых они живут на поверхности тела (причем червь может их каким-то образом усваивать через поверхность).

Как сказано ранее, все организмы сообщества черных курильщиков сделаны из органики, полученной из углекислого газа вулканического происхождения посредством энергии соединений серы вулканического же происхождения. Однако, поскольку все они (включая бактерии) использовали в качестве окислителя свободный кислород, все же нельзя сказать, что они существуют независимо от фотосинтеза. Де-факто в жизнь этих экосистем на паритетных началах вложились хемосинтез и фотосинтез. Недра Земли доставили в эти экосистемы восстановитель, а Солнце (через фотосинтезирующие растения) – окислитель. Надо заметить, что источник окислителя – более молодой, чем источник восстановителя. Энергия Солнца берется из термоядерного синтеза гелия из водорода. Энергия же химических соединений недр Земли была запасена в них, грубо говоря, при формировании Земли, а она формировалась из космического газа и пыли одновременно с Солнцем, в составе Солнечной системы в целом. Солнце – звезда второго поколения, следовательно, Солнечная система, включая землю, сформировалась в результате конденсации вещества, выброшенного при взрывах сверхновых звезд первого поколения.


^ История эволюции биологических процессов обмена вещества и энергии на Земле


Мы с вами, как животные, окруженные в основном животными и растениями, не должны забывать о разнообразии возможных вариантов организации обмена вещества и энергии у живых существ. Все они (и даже наверняка такие, о которых мы не догадываемся) были реализованы у прокариот, тогда как эукариоты унаследовали только два из них – «животный» и «растительный». Вообще же «экономическая» сторона жизни имеет, подобно марксизму (хотя эта шутка вряд ли сейчас актуальна), имеет три источника: энергии, углерода и электронов (т. е. вещество, используемое как восстановитель; из элементов донором электронов чаще всего является водород).

По источнику энергии все живые существа делятся на фототрофов – использующие энергию света, и хемотрофов – использующие энергию химических связей.

По источнику углерода они делятся на автотрофов – использующих углекислый газ, и гетеротрофов – использующих органические вещества.

По источнику электронов они делятся на органотрофов – использующие водород органики, и литотрофов – использующих неорганические вещества – производные литосферы. Это могут быть молекулярный водород, аммиак, сероводород, сера, угарный газ, соединения железа и др.

Скажите, кто по этой тройственной классификации мы с вами? Мы не используем энергию света непосредственно, мы используем энергию питательных веществ. Значит, мы хемотрофы. Откуда мы берем углерод для построения молекул своего тела? Тоже из пищи, значит, мы гетеротрофы. А откуда мы берем электроны? Какое вещество мы окисляем? Наверное, самый нетривиальный вопрос. Давайте догадаемся. Выше не раз было сказано, что кислород является сильным окислителем. Можно догадаться, что окисление происходит там, где используется кислород. Где он используется? Во всех вариантах: и в бытовом, и в биохимическом этот процесс называется дыханием. Вспомним обобщенное уравнение дыхания:

(CH2O) + O2 = CO2 + H2O.

Мы видим, что кислород отнял водород от углевода, при этом его окислив. И здесь исходным источником электронов служит органика пищи.

Стало быть, мы, животные – хемоорганогетеротрофы.

А растения? Они фототрофы, это понятно. Они автотрофы, это мы тоже усвоили. А что они в конечном счете окисляют? Давайте теперь снова вспомним уравнение фотосинтеза. Собственно, вспоминать ничего и не надо, просто переставим правую и левую части предыдущего уравнения:


CO2 + H2O = (CH2O) + O2.


Окисляется же здесь сам великий окислитель – кислород. В молекулярном кислороде степень окисления у него 0, во всех веществах слева – -2. А восстанавливается углерод (который окисляется в обратной реакции). Он находится в неорганическом веществе – углекислом газе. Вспомним, однако, что фотосинтез идет в две стадии и кислород образуется в процессе фотолиза воды, когда электроны отрываются от молекулы воды. Вода тоже неорганическое соединение, таким образом, растения – фотоавтолитотрофы.

Наша лекция посвящена получению энергии и фиксации углерода из углекислого газа в органику. Но в биологической органике есть и другие важные элементы. Многие из них, такие как фосфор, сера, доступны в водорастворимых веществах. Другое дело азот. Он тоже доступен в водорастворимых веществах, таких как соли аммония, нитриты и нитраты. Однако почти все они в современном мире (за исключением продуктов вулканизма) сами биогенного происхождения, а абиогенный азот существует только в молекулярной форме. Поэтому фиксация атмосферного азота – сама по себе важная проблема. Ее умеют решать только бактерии, в том числе и цианобактерии. Не будем вас обременять биохимическими схемами фиксации азота. (Заметим, что во всех таких схемах все самые важные действующие лица – ферменты – всегда остаются за кадром ввиду своей необыкновенной сложности: в схемах рисуют только взаимопревращения субстратов и продуктов ферментативных реакций).

Мы только что ознакомились с физико-химическими механизмами, при помощи которых живые существа добывают энергию и производят органические вещества, из которых они состоят. Нам известна их необыкновенная сложность. Как и в случае белков и нуклеиновых кислот, нас не может не поражать универсальность этих сложных процессов. У всех живых существ, кроме некоторых археобактерий, есть гликолиз. Практически у всех нынешних организмов (за исключением некоторых совсем деградировавших паразитических прокариот), даже анаэробных, есть АТФ синтетаза, работающая на разности концентраций протонов как гидроэлектростанция на разности уровня воды. У всех организмов, которые дышат молекулярным кислородом или производят его, имеется цикл Кребса, цепь переноса электронов, в которую входят многие цитохромы, а также У всех автотрофов, производящих органику, будь то бактерии или растения, есть цикл Кальвина. Здесь следует задаться немаловажным вопросом: как или хотя бы в какой последовательности вся эта немыслимая механика возникла?

Совершим небольшой мысленный экскурс в проблему возникновения жизни. Как вы думаете, кто появился раньше – автотрофы или гетеротрофы? В голову может прийти простая мысль, что поскольку автотрофы создают органические вещества, а гетеротрофы их только едят, то жизнь должна была начинаться с автотрофов, так как гетеротрофам, появись они первыми, просто нечего было бы «есть». Эта мысль совершенно неверная. Она представляет собой доведение до абсурда принципа актуализма – реконструкции ситуаций прошлого на основе того, что есть сейчас. Гетеротрофы должны были появиться раньше автотрофов, поскольку они элементарно могут быть гораздо проще устроены – ведь получать энергию путем разрушения сложных молекул проще, чем строить эти сложные молекулы из простых, получая при этом энергию из какого-то другого источника. Принцип «ломать – не строить» абсолютно универсален, поскольку представляет собой достаточно точное отражение второго начала термодинамики.

У нас нет никаких оснований допускать, что жизнь изначально возникла как нечто сразу очень сложное, поэтому мы должны рассматривать возникновение и эволюцию жизни как путь от простого к сложному. Откуда вообще возникла жизнь? В общем, если отбросить сказочные варианты, то единственное, что приходит на ум и нам, и серьезным ученым – это то, что самые первые живые системы самоорганизовались из какой-то «неживой» органики, которой для этого должно было быть довольно много. Согласно современным данным науки, так оно и было: на поверхности Земли тогда существовало очень много достаточно сложных органических соединений, появившихся внебиологическим путем. Вот и «еда» для первых гетеротрофов! Но она должна была бы достаточно быстро кончиться. Гетеротрофы некоторое время могли бы есть друг друга, но при всех подобных процессах идут неизбежные потери вещества и энергии. Их запасы в биосфере должны были каким-то образом пополняться. Вот здесь уже ситуацию спасло появление автотрофов.

Наверняка это не были фотоавтотрофы. Фотосинтез слишком сложно организован. Все ученые единодушны во мнении, что первыми автотрофами были хемоавтотрофы. Мы уже убедились, что химические пути извлечения энергии из неорганических веществ даже сейчас отличаются разнообразием. Совершенно очевидно, что на заре становления жизни это разнообразие было еще больше, как было больше и разнообразие химических ситуаций. Тогда был гораздо активнее вулканизм и бомбардировка космическими телами, в атмосфере отсутствовал в значимых концентрациях свободный кислород, что позволяло существовать на земной поверхности разнообразным неорганическим восстановителям (аммиак, водород и др.), в конце концов присутствовала органика абиогенного происхождения. Атмосфера тогда имела восстановительный характер и в дефиците был скорее окислитель. Все это должно было провоцировать организмы, исходно возникшие из абиогенной органики именно как потребители этой самой органики, переходить на самые разнообразные неорганические источники энергии.

Но и хемоавтотрофы отличаются весьма сложной биохимией. Любая автотрофность требует существования систем, связанных с созданием и использованием разности концентрации протонов по сторонам мембраны, прежде всего цепи переноса электронов и АТФ-синтетазы. Как же все это возникло? На этот счет есть весьма правдоподобная, хотя и довольно неожиданная, теория о том, какие стадии проходило развитие первоначальной жизни на нашей планете.

1. ^ Изобретение гликолиза. Единственный универсальный и при этом весьма малоэффективный механизм получения энергии у живых существ – это гликолиз. По всей видимости, первые живые существа существовали за счет того, что получали некоторое количество АТФ посредством подобных современному гликолизу процессов окисления имевшейся в среде богатой водородом абиогенной органики (из которой они сами и самоорганизовались), иными словами, за счет брожения. В ходе этих процессов водород через посредство НАД-Н или НАДФ-Н переносится с одних органических молекул на другие. Как правило, восстановленные молекулы идут на построение живого вещества, а окисленные выбрасываются в окружающую среду в виде «отходов производства». Такие молекулы обычно представляют собой органические кислоты (молочная, уксусная, муравьиная, пропионовая, масляная, янтарная – все эти варианты встречаются у современных бактерий).

2. ^ Изобретение протонного насоса. Как следствие этой первичной химической активности жизни окружающая среда неуклонно закислялась. Можно предположить, что на какой-то стадии развития жизни богатые органикой воды Земли – как минимум насыщенные ими грунты или даже весь Мировой океан – в буквальном смысле прокисли. Закисление водной среды потребовало развитие систем активной откачки протонов из клеток в целях поддержания их внутренней среды. Такая откачка велась с затратой АТФ специальными белковыми насосами, пронизывавшими клеточную мембрану.

Живые организмы на этой стадии продолжали оставаться гетеротрофами.

3. ^ Изобретение цепи переноса электронов. Абиогенная органика была невозобновимым ресурсом. Ее оставалось все меньше, добывать АТФ путем гликолиза становилось все труднее. А сопротивление прогрессировавшему закислению посредством протонных насосов требовало все больше АТФ. Для решения проблемы закисления иным способом были изобретены системы связанных с мембранами белков, которые осуществляли трансмембранный транспорт протонов против градиента концентрации за счет энергии окислительно-восстановительных реакций, связанных с переносом электронов с одних имевшихся во внешней среде в избытке веществ на другие, но уже без посредства НАД-Н или НАДФ-Н. Такими веществами были накопившиеся в среде органических кислоты и неорганические вещества. Системы трансмембранного экспорта протонов, о которых шла речь, и были прообразом цепи переноса электронов. Бактерии, живущие в кислой среде, до сих пор используют цепь переноса электронов для поддержания менее кислой внутренней среды. За счет возникновения цепи переноса электронов была достигнута экономия АТФ, поэтому носители этой цепи получали несомненное преимущество перед теми организмами, которые ее не имели.

4. ^ Изобретение АТФ-синтетазы. Системы экспорта протонов через мембрану, использующие окислительно-восстановительные реакции, постепенно совершенствовались и в конце концов превзошли по эффективности АТФ-зависимые мембранные насосы. Это дало возможность обратить работу последних. Теперь они, наоборот, запускали протоны внутрь клетки, синтезируя при этом АТФ из АДФ. Так возникла АТФ-синтетаза, использующая для синтеза АТФ разницу в концентрации протонов. Как сказано выше, действие АТФ-синтетазы обратимо – при высоких концентрациях АТФ и небольшой разнице потенциалов по обе стороны мамбраны, она, наоборот, создает градиент концентрации протонов. Именно в качестве протонного насоса АТФ-синтетаза (а этот белковый комплекс имеется у всех без исключения современных живых существ) работает у анаэробных бактерий.

Создание АТФ-синтетазы было важнейшим прорывом. На этой стадии организмы решили и проблему поддержания внутренней среды, и проблему получения энергии, впервые став из гетеротрофов автотрофами, а именно хемоавтотрофами. Подобно современным хемоавтотрофам, они получали энергию за счет окислительно-восстановительных реакций с использованием цепи переноса электронов. Однако помимо энергии для жизни необходим синтез восстановленной органики. Ее абиогенные запасы были к тому времени практически исчерпаны. Для синтеза такой органики de novo необходимы сильные доноры водорода, такие как восстановленный кофермент НАДФ-Н. Восстановление этого коферментаможет идти, как и синтез АТФ, за счет разности концентрации протонов путем обращения цепи переноса электронов и работы фермента, аналогичного современной НАД-Н-дегидрогеназы, который тогда работал в обратном направлении – восстанавливал НАД-Н из НАД+.

Обращаем ваше внимание на то, что эти организмы были анаэробными хемотрофами, которые в современном мире встречаются исключительно редко. В отсутствие такого сильного окислителя, как кислород, скорее всего первые схемы хемосинтеза были основаны на окислительно-восстановительных реакциях с незначительным энергетическим выигрышем. Идея использования протонного градиента состояла в том, что небольшой выигрыш многих таких реакций суммировался в нем и мог быть использован в таких реакциях, требующих значительных затрат энергии, как восстановление НАДФ-Н.

5. ^ Изобретение фотосинтеза и фотосистемы 1. Как видим, многие предпосылки для фотосинтеза к этому времени уже существовали – были изобретены АТФ-синтетаза, цепь переноса электронов и биохимические пути синтеза органики с использованием НАД-Н. До фотосинтеза оставался один шаг – появление пигментов, способных улавливать энергию фотонов и передавать ее в систему окислительно-восстановительных реакций, связанных с цепью переноса электронов. Антенные системы современных фотосинтетиков отличаются большой сложностью, у первых же они наверняка должны были быть довольно просты. Мы уже рассмотрели простой механизм использования энергии света галобактериями. Существует мнение, что самыми первыми антеннами, способными улавливать энергию фотонов, были все те же наши старые знакомые – азотистые основания нуклеиновых кислот. Как вы помните, там тоже существуют резонансная система из чередующихся двойных и одинарных связей, хотя и не таких впечатляющих масштабов, как у хлорофиллов.

Вероятно, из дошедших до наших дней фотосистем первой возникла фотосистема 1, что привело к появлению зеленых серных бактерий. Возможно опять-таки, что исторически первым возникло циклическое фотофосфорилирование, не требующее внешних окислителей и восстановителей. Однако наиболее важным была приобретенная этой фотосистемой способность прямо восстанавливать НАДФ+ до НАДФ-Н за счет энергии солнечного света, отнимая электрон, к примеру, у сероводорода и окисляя его до атомарной серы, как у современных зеленых серобактерий. Обратим внимание на то, что сера играет важную роль в составе белков фотосистемы 1.

Кстати, это произошло 3–4 млрд лет назад, т. е. спустя всего миллиард лет после возникновения Земли. Время хемоавтотрофов прошло, началось время фотоафтотрофов.

6. ^ Изобретение фотолиза воды. Проблемой первых фотосинтетиков был дефицит хороших неорганических восстановителей. Вода – «очень плохой» восстановитель, зато имеется в неограниченном количестве. Объединение двух фотосистем, унаследованных от зеленых (фотосистема 1) и пурпурных (фотосистема 2) серных бактерий в одну сопряженную систему, произошедшее у сине-зеленых водорослей, (цианобактерий) позволило, путем соединения энергии двух последовательно уловленных фотонов, окислять воду, отнимая электроны у атомов кислорода. Это было важным прорывом в энергетике первых организмов, имевших поистину чудовищные последствия. С объединением двух фотосистем у предков цианобактерий, или сине-зеленых водорослей, появились организмы с минимальными потребностями в химических веществах окружающей среды. Это привело к появлению большого количества биогенной восстановленной органики – жизнь стала процветать. Однако на земной поверхности стал появляться такой страшный яд, как свободный кислород.

Поначалу весь кислород, выделявшийся в ходе фотосинтеза, уходил на окисление ионов двухвалентного железа, в изобилии содержавшихся в Мировом океане, до трехвалентного, которое стало осаждаться в виде окислов железа. Этот процесс начался 2,7 млрд лет назад и закончился около 2 млрд лет назад. Все эти 700 млн лет (напомним, что динозавры вымерли всего 65 млн лет назад) на Земле существовал фотосинтез современного типа, сопровождавшийся фотолизом воды, свободный кислород образовывался, однако в атмосфере он отсутствовал. Это значит, что на Земле еще не было изобретено дыхание. И это значит опять-таки, что на планете не было предпосылок для существования эффективных гетеротрофов. Не могло идти речи не только о «животных», но и об аэробных бактериях, которые в современном мире играют такую важную роль в расщеплении биогенной органики. Можно сказать, что все это время на Земле существовал некий золотой век, земной рай, в котором никто никого не ел (и не ел даже трупы). Его населяли самые совершенные и воистину безгрешные живые существа, «питавшиеся» солнечным светом, водой, углекислым газом и азотом воздуха. Это были цианобактерии, или сине-зеленые водоросли (те самые, которые прекрасно существуют и поныне). В качестве наиболее автономных живых существ они совершеннее растений, поскольку, подобно многим бактериям, умеют фиксировать азот атмосферного воздуха. (Растения этого не умеют и вынуждены использовать окисленный азот нитратов или восстановленный азот аммония, который сейчас имеет биогенное происхождение.) Сине-зеленые водоросли жили и процветали в виде колоний на мелководьях. Эти колонии имели более или менее шарообразную форму и нарастали с поверхности. На них оседали мелкие частички грунта, обогащенного трехвалентным железом, которые в конце концов погребали отмершие клетки внутри колонии. В отсутствие «животных» возраст индивидуальной колонии мог быть очень большой. Такие колонии сохранились в виде окаменелостей, называемых строматолитами (переводится с греческого как «слоистые камни»), камнями, имеющими структуру концентрических слоев, часто обогащенных железом.

7. ^ Изобретение дыхания. Однако «безгрешность» цианобактерий была кажущейся. Выделяя в ходе фотолиза воды такой сильный окислитель, как кислород, они исподволь отравили Мировой океан и подготовили крах своего мирного райского царствования, быстро сменившегося тем привычным для нас адом голодных демонов, где живые существа непрерывно пожирают друг друга. (Это все конечно же метафора. Но вот недавно вышел учебник биологии, изданный Православной церковью, где говорится, что до грехопадения Адама самки комаров, возможно, питались нектаром цветов, который-де мог содержать гемоглобин. Вот это уже не смешно, это попытка вернуть нас во времена дичайших суеверий путем воспитания детей с привлечением лжи и безумных фантазий.) Примерно 2 млрд лет назад двухвалентное железо в океане закончилось и кислород стал поступать в атмосферу. Современного содержания в атмосфере он достиг между 1,5 и 0,5 млрд лет назад. Появление кислорода потребовало перестройки всей биохимии практически всех живших тогда существ, так как он в прямом смысле отравлял многие ферменты (вернее, коферменты). В то же время в среде появился мощный окислитель, который был приспособлен в качестве акцептора электоронов в цепях переноса электронов, чем существенно повысил их эффективность. Так возникло клеточное дыхание. Многие современные пурпурные бактерии умеют перестраиваться с фотосинтеза на дыхание с использованием одних и тех же цепей переноса электронов.

Только на этой стадии стало возможным появление гетеротрофов, пользующихся процессами более эффективными, чем гликолиз, причем гораздо более эффективными (вспомните – в 18 раз!). Начался ренессанс гетеротрофов. Вы знаете, что в настоящее время существует огромное количество аэробных бактерий. Все они происходят от фотосинтетических бактерий, утративших способность к фотосинтезу, но сохранивших цепь переноса электронов. Даже наша кишечная палочка происходит от пурпурных бактерий! Возникли предпосылки появления организмов, живущих за счет эффективного окисления органики, произведенной автотрофами. Тем самым безраздельному царствованию автотрофов был положен конец. Немаловажно, что вместе с прекращением отложений трехвалентного железа в это время катастрофически сократилось нефтенакопление. Если раньше биогенной органики образовывалось так много, что ее излишки после долгих химических преобразований отлагались в недрах в виде нефти, которая послужила бонусом для таких отдаленных потомков организмов тех дней, как мы с вами, то с появлением дыхания возник ажиотажный спрос на эту органику, которую новый агрессивный потребитель начал забирать прямо от производителя.

Вспомним, сколько проблем растениям доставляет фотодыхание – отщепление молекулы углекислого газа от молекулы рибулозобифосфата ферментом рибулозобифосфаткарбоксилазой вместо фиксации молекулы углекислого газа из окружающей среды на ней же, которое происходит в условиях избытка кислорода и недостатка углекислого газа - то есть в преобладающих условиях нашей планеты. И тем не менее, все растения используют именно этот фермент в качестве ценрального для фотосинтеза, хотя в поисках обходных путей для преодоления фотодыхания некоторые научились фиксировать углекислый газ и другими способами. Нам следует заключить, что за 700 миллионов лет существования фотосинтеза современного типа в почти анаэробных условиях, несмотря на выделение в ходе него кислорода, этот процесс был настолько отлажен и стандартизован, что альтернативных механизмов аэробного фотосинтеза не было выработано, появлялись лишь некоторые надстройки к нему.

8. ^ Появление митохондрий и пластид. Около 1,5 млрд лет назад некоторые аэробные бактерии стали жить в клетках примитивных (и изначально анаэробных!) эукариот и со временем превратились в митохондрии. С этого момента стало возможным появление животных, первоначально одноклеточных. Все современные эукариоты имеют митохондрии, и все эти митохондрии родственны между собой и явно были «одомашнены» только один раз. Лишенные митохондрий первичные анаэробные эукариоты до наших дней не дошли. Позже некоторые цианобактерии, также перейдя к жизни внутри эукариотических клеток, превратились в пластиды водорослей, причем это происходило у разных водорослей как минимум трижды. От зеленых водорослей впоследствии произошли растения. Во всех случаях пластиды были приобретены клетками, митохондрии уже имевшими. Эти клетки «умели дышать», но не умели синтезировать органику, т. е. это были животные клетки. Таким образом, растения, т. е. способные к фотосинтезу эукариоты, имеющие пластиды и митохондрии, произошли от животных (конечно, это происходило на одноклеточном уровне).

Мы видим, что развитие, или эволюция жизни на Земле (о значении слова «эволюция» мы подробнее поговорим в 15-й лекции), проходила очень неравномерно. Периоды длиной в сотни миллионов лет, когда ничего принципиально нового не происходило, сменялись быстрыми конструктивными прорывами, в результате которых лик Земли кардинальнейшим образом преображался. Каждый из этих прорывов сопровождался изобретением способа преодоления какого-то дефицита – сначала это был дефицит восстановителей, а потом и дефицит окислителей. Каждого из таких «изобретений» приходилось ждать сотни миллионов или миллиарды лет, что говорит лишь о том, что они происходили случайно – любая «целенаправленная» инженерная деятельность была бы гораздо эффективнее. В результате жизнь на земле научилась обходиться самыми недефицитными ресурсами – водой, углекислым газом, атмосферным азотом, а главным источником энергии – невозобновляемым (!), но практически неиссякаемым стал являться солнечный свет. Возможно, лику Земли еще предстоит изменяться, и не исключено, что теперь уже вследствие «разумной» деятельности человека. А вот насколько она окажется целесообразной и не приведет ли человека и жизнь в известных нам формах к гибели – это еще вопрос.

Заканчивается шестая лекция. Первая была посвящена определению жизни, а пять остальных – всяческой химии. И это правильно! Вспомним то определение жизни, на котором мы тогда остановились: совокупность самоподдерживающихся открытых систем, существующих, в виде особых структур, за счет постоянного протока вещества и притока энергии и способных к более или менее точному самовоспроизведению.

Большая часть из того, о чем здесь говорится, реализуется на рассмотренном нами химическом уровне. За более или менее точное самовоспроизведение отвечают нуклеиновые кислоты, способные к матричному биосинтезу. Проток вещества и приток энергии реализуется посредством ферментативных реакций с участием довольно простых органических кислот, особых нуклеотидов, коферментов-посредников и более сложных белково-пигментных систем, таких как фотосистемы и цепь переноса электронов. Пожалуй, за рамки рассмотренной нами химии выходит только оговорка «в виде особых структур». Нам с вами в двух схожих между собой случаях уже были нужны особые структуры – пространство, ограниченное мембраной, по разные стороны которой создается разница в концентрации протонов – внутреннее пространство митохондрии в процессе окислительного фосфорилирования и внутреннее пространство тилакоида в случае световой стадии фотосинтеза. На самом деле за кадром нашего рассмотрения все время оставалась как минимум еще внешняя мембрана клетки, которая отграничивала наш химический реактор с тонко настроенной концентрацией различных веществ от внешнего пространства.

Таким образом, мы рассмотрели почти всю сущность жизни, которую нам необходимо дополнить ее структурной организацией. К этому мы и перейдем в следующей лекции, потому что, по сути, вся биология сверх биохимии – это наука о биологических структурах. Мы начнем со структур на так называемом клеточном уровне.

Лекция 7. КЛЕТКА 1. КЛЕТОЧНАЯ МЕМБРАНА,
^ КЛЕТОЧНАЯ СТЕНКА, ЯДРО

Перейдем от структурных формул к рассмотрению структур, которые можно увидеть хотя бы под микроскопом, пусть и электронным. Мы ознакомились с жизнью как со сложнейшим биохимическим предприятием по преобразованию сотен тысяч, если не миллионов, разных сложных органических молекул. Большое количество этих процессов происходит одновременно и совместно в одних и тех же растворах, и они разделены и предопределены исключительно специфичностью осуществляющих их ферментов. Но и из общих соображений ясно и мы уже встречались с тем, что во многих ситуациях разные части этого производства должны быть расположены в специальных цехах, в которых поддерживается специальная химическая среда (та же кислотность) и на поверхности которых определенным образом организованы ферменты.

И первое, в чем нуждается живая система, – это в локализации собственного пространства и отграничении от пространства окружающего. Иначе все вещества, включая ферменты, разойдутся по градиенту своей концентрации в окружающую среду (несомненно, водную, так как все живые процессы идут в водных растворах или гелях) и не смогут встретиться друг с другом. По-видимому, жизнь возникла не в воде как таковой, иначе бесконечное разведение не позволило бы ей сложиться, а в какой-то капельной среде – в грунте, пористых горных породах и т. д., где пространственная ограниченность обеспечивалась извне. О возникновении жизни можно говорить с того момента, когда первые самовоспроизводящиеся системы научились хоть в какой-то мере ограничивать себя самостоятельно. Основные теории, описывающие, как все это происходило, достойны специального рассмотрения, а пока нам нужно принять хозяйство по описи и рассмотреть, что мы имеем сегодня.

А сегодня мы имеем, что все живое организовано на основе элементарной и более или менее самодостаточной структурно-функциональной единицы – клетки. Причем каждый живой организм либо является клеткой, либо состоит из многих клеток и является колонией или государством клеток, как мы с вами (мы являемся государством ни много ни мало из миллиона миллиардов клеток).

Почти каждая клетка проявляет все основные свойства живого организма: она питается, растет, реагирует на внешние сигналы, взаимодействует с другими клетками, иногда движется и обычно (но не всегда!) размножается.

Размножаются клетки посредством деления (иногда почкования, что, по сути, является неравным делением). Важно, что каждая клетка происходит от клетки же и не может возникнуть иным путем.

Все биохимические процессы, связанные с получением энергии и синтезом биологических органических веществ, происходят внутри клетки. Внутри клетки же хранится и реализуется генетическая информация.

Внутри клетки находятся сотни тысяч различных ферментов и других белков, но ограниченное число их видов может специально выделяться во внешнюю среду. Углеводы находятся как внутри клеток, так и снаружи. Жиры и липиды, как правило, находятся внутри клеток, если они и выделяются из организма (допустим, в наших сальных железах), то только после разрушения накопивших их клеток. А вот нуклеиновые кислоты в норме всегда находятся только внутри клеток.

Поговорим о самом простом – о размере клеток. Исключения как в большую, так и в меньшую сторону поразительны, но обычные размеры клеток прокариот – 0,5–5 мкм, а эукариот – 10–50 мкм. Мы все хорошо знаем миллиметр – одна тысячная метра. Микрометр – это одна тысячная миллиметра. Таково подавляющее большинство клеток. Потому что именно это – оптимальный размер всего хозяйства, организованного, как живая клетка, из полимерных макромолекул. Исключения представляют собой особые случаи. Давайте же их рассмотрим.

Желток любого яйца – одна клетка – а именно яйцеклетка. Соответственно яйцеклетка вымершего (не без помощи человека) мадагаскарского страуса эпиорниса достигала в объеме 6 л. У таких клеток основное клеточное хозяйство размазано в виде пластиночки на одной из сторон, все остальное пространство занято запасным веществом – желтком, представляющим собой определенные запасные белки (преимущественно лецитин), кроме того, в нем довольно много запасенной впрок матричной РНК. Однако все это вместе – одна клетка, окруженная клеточной мембраной.

Вы знаете, что нервные клетки общаются друг с другом при помощи особых отростков, являющихся частью клетки. При этом многие отростки, по которым сигнал собирается (дендриты), короткие, а один отросток, по которому передается (аксон), длинный. Нервная система моллюсков устроена таким образом, что сигналы от мозга передаются клеткам тела фактически без посредников. Соответственно длина аксонов гигантских кальмаров достигает пары десятков метров.

Кроме яиц вы постоянно сталкиваетесь и с другими клетками, которые можно увидеть невооруженным глазом – в переспевшей мякоти яблока или арбуза. Там клетки немногим меньше миллиметра, но они в основном заполнены огромными пузырьками с соком.

Клетки, в которых практически нет «ничего лишнего», т. е. которые представляют собой фабрики, но не склады – невелики. Особенно это касается клеток, которые активно делятся, прежде всего, клеток зародышей животных или растущих верхушек растений.

Самые мелкие клетки – 0,1 мкм в поперечнике – наблюдаются у микоплазм – своеобразных бактерий, до крайней степени упростившихся за счет своего образа жизни внутриклеточных паразитов.

Главные свойства всех клеток одинаковы. Основные различия существуют между двумя типами организмов (мы уже знакомы с ними – это прокариоты и эукариоты), различия же между клетками одноклеточных и многоклеточных эукариот незначительны.

Рассмотрим важнейшие компоненты клетки.