Учебное пособие для 10-11 классов

Вид материалаУчебное пособие

Содержание


3. Организм и его развитие
4.1.1. Типы изменчивости
4.1.2. Норма реакции
4.1.3. Закон гомологических рядов
4.2.1. Законы наследственности
Подобный материал:
1   2   3   4   5   6   7   8   9


Значение гликолиза. В результате гликолиза запасается лишь 5% от всей энергии, которая может быть получена при полном расщеплении глюкозы до конечных продуктов СО 2 и Н 2 О. Несмотря на это гликолиз играет огромную роль в жизни организмов, как процесс проходящий без кислорода:


благодаря гликолизу получают энергию все животные, ведущие анаэробный образ жизни (круглые и плоские черви);


для любого организма гликолиз является первой стадией расщепления углеводов;


ткани и отдельные клетки организма способны функционировать при нехватке кислорода, благодаря энергии, выделяемой в ходе гликолиза. Например, мышцы человека при очень больших нагрузках получают недостаточно кислорода для полного окисления глюкозы, поэтому вынуждены работать, используя энергию, выделяемую при гликолизе. В результате в мышцах накапливается молочная кислота, вызывающая в них болезненные ощущения.


39


1.6.7. ДЫХАНИЕ


?С точки зрения метаболизма клетки под дыханием понимается совокупность всех окислительных реакций расщепления сложных органических соединений, проходящих с участием кислорода. Частным случаем дыхания является окисление молочной кислоты до конечных продуктов распада углекислого газа и воды:


С 3 Н 6 О 3 +3О 2 →3СО 2 +3Н 2 О + энергия


?В отличие от гликолиза дыхание происходит только в митохондриях клетки.


Энергия, выделенная при окислении одной молекулы молочной кислоты, запасается в виде 17 молекул АТФ. Если учесть, что при расщеплении одной молекулы глюкозы получаются две молекулы молочной кислоты, следовательно, на этапе окисления одной молекулы глюкозы получается 34 молекулы АТФ, а совокупность реакций гликолиза и окисления глюкозы дает 36 молекул АТФ.


Значение дыхания. Как видно дыхание дает значительно больше энергии, запасенной в виде АТФ, чем гликолиз. Этим определяется большое значение этого процесса для клетки и организма в целом. Благодаря такому высоко эффективному процессу получения энергии как дыхание живые организмы получили высокий уровень обмена веществ, высокую активность и темпы роста. Вместе с тем древнейшие обитатели нашей планеты, жившие в бескислородной атмосфере, могли получать энергию только анаэробным путем (например, путем гликолиза). Использование кислорода как окислителя органики началось лишь после его накопления в атмосфере в результате деятельности фотосинтезирующих одноклеточных организмов.


2. ВИРУСЫ


?Первый вирус открыт в 1892 году Д.И. Ивановским (вирус табачной мозаики). В настоящее время известно около тысячи вирусов. Вирусы внутриклеточные паразиты. К вирусным относятся такие заболевания человека как весенне-летний клещевой энцефалит, грипп, оспа, корь, детский паралич, гепатит, некоторые фор-


40


мы рака. Существует большое число вирусных болезней животных и растений. Вирусы способны паразитировать даже на клетках бактерий. Такие вирусы называются бактериофагами .


Вирусы, как правило, имеют очень малые размеры и большинство из них видны только в электронный микроскоп. Все вирусы имеют в своем составе нуклеиновую кислоту и белковую капсулу. Каждый вирус имеет только один тип нуклеиновой кислоты либо ДНК, либо РНК. Наблюдается большое разнообразие в строении вирусных нуклеиновых кислот. Так существуют вирусы, имеющие одноцепочечную ДНК, или одноцепочечную РНК, также есть вирусы с двухцепочечной ДНК, или двухцепочечной РНК.


?Вирусы существуют в двух формах: в неактивной форме - вне клетки и в активной форме - внутри клетки. Проникнув через мембрану в здоровую клетку, вирус использует ферменты пораженной им клетки для синтеза собственных белков на матрице вирусной нуклеиновой кислоты. Затем происходит редупликация вирусной нуклеиновой кислоты и сборка новой вирусной частицы, которая покидает клетку. Исследования ученых вирусологов показали, что поражение клетки одной вирусной частицей препятствует заражению второй частицей.


В клетке, пораженной вирусом, могут произойти различные патологические изменения: приостановка синтеза собственных белков, перерождение в раковую клетку и даже гибель. Для защиты против вирусов клетки способны вырабатывать специальный белок интерферон . Синтез интерферона стимулируется введением в клетку чужеродной нуклеиновой кислоты.


Строение и функционирование вируса не позволяет однозначно признать его живым или неживым. Можно считать вирусы промежуточной формой. Вместе с тем вполне употребимо определение вируса как неклеточной формы жизни.


В настоящее время окончательно не установлено происхождение вирусов. Однако многие ученые считают, что вирусы произошли от бактериальных клеток или отдельных органелл эукариотических клеток (митохондрий или хлоропластов) в результате


41


перехода их к внутриклеточному паразитизму и упрощению строения.


^ 3. ОРГАНИЗМ И ЕГО РАЗВИТИЕ


Онтогенез – это индивидуальное развитие организма, от оплодотворенной яйцеклетки – зиготы до смерти организма. Онтогенез разделяется на два этапа: эмбриогенез и постэмбриогенез.


3.1 ЭМБРИОГЕНЕЗ


Эмбриогенез или эмбриональное развитие – это развитие организма от оплодотворения яйцеклетки до рождения или вылупления. Рассмотрим стадии эмбрионального развития.


Дробление – это последовательных митотических делений зиготы и следующих поколений клеток, в результате которых образуются все более мелкие клетки, все вместе не превышающие размерами исходную зиготу. При дроблении появляющиеся поколения клеток не отличаются друг от друга ни строением, ни выполняемыми функциями. Про такие клетки говорят, что они не дифференцированы. В зависимости от особенностей строения зиготы дробление протекает по-разному. Можно выделить три типа дробления.


Неполное дробление наблюдается у животных, зиготы которых имеют огромный запас питательных веществ, например, у птиц и пресмыкающихся. Хорошо всем известный желток яйца курицы есть ничто иное, как зигота (или яйцеклетка). В такой зиготе ядро плавает на ее поверхности. Эта часть зиготы называется анимальным полюсом . На противоположном конце от ядра находится так называемый вегетативный полюс . Таким образом, можно сказать, что у при неполном дроблении деление протекает только на анимальном полюсе зиготы.


Полное неравномерное дробление наблюдается у животных, зиготы которых имеют много питательных веществ (но меньше, чем у птиц и пресмыкающихся) например у рыб и земноводных. Зигота этих животных (икринка) делится полностью, но уже после нескольких делений частота делений клеток анимального полюса становится заметно выше, чем у клеток вегетативного


42


полюса.


Полное равномерное дробление встречается у животных, зиготы которых имеют относительно малое количество питательных веществ цитоплазмы. К ним относятся млекопитающие и головохордовые (ланцетник). В зиготе слабо выражены анимальный и вегетативный полюса, поэтому зигота делится полностью и дальнейшее деление клеток идет почти с одинаковой интенсивностью, как на анимальном, так и на вегетативном полюсе.


Рассмотрим более подробно дробление зиготы ланцетника. Первые два деления зиготы проходят меридионально, то есть в вертикальной плоскости. Следующее деление происходит в широтном направлении. Затем все последующие деления представляют строгое чередование делений клеток меридионально и широтно. Так постепенно количество клеток растет, их скопление имеет шаровидную форму и называется бластула . Бластула представляет собой полый шар, размеры которого не превосходят исходную зиготу. Полость внутри называется бластопор . Стенки бластулы образованы только одним слоем клеток.


Гаструляция – это следующая за дроблением стадия эмбрионального развития. У ланцетника гаструляция проходит относительно просто. Часть клеток бластулы начинает впячиваться внутрь. Такое впячивание стенки внутрь полости называется инвагинация клеток. Инвагинирующие клетки проникают все глубже и глубже внутрь бластоцеля, пока не встретятся с клетками противоположной стенки бластулы. На этом инвагинация заканчивается. Ее результатом явилась совершенно новая структура зародыша, называемая гаструла . Гаструла имеет несколько удлиненную форму. На одном конце гаструлы находится отверстие, образованное в результате инвагинации клеток участка бластулы. Это отверстие называется гастропор . Сама гаструла состоит из двух слоев клеток: наружного слоя, называемого эктодермой и внутреннего (из инвагинировавших клеток), называемого энтодермой . Эктодерма и энтодерма являются зародышевыми тканями. В конце га-


43


струляции происходит образование третьей зародышевой ткани мезодермы . Мезодерма образуется между экто- и энтодермой, в результате миграции некоторых клеток энтодермы.


Органогенез – это процесс сложной дифференциации клеток трех зародышевых тканей, в результате которого происходит образование всех органов. Органогенез протекает под действием двух внутренних факторов.


Тканевая индукция – это способность некоторых клеток зародыша определять особенности развития соседних клеток. Так, например, под воздействием некоторых клеток энтодермы, контактирующие с ними клетки эктодермы, инвагинируют внутрь и образуют спиной мозг. Следовательно, участок энтодермы является индуктором спинного мозга.


Генетическое детерминирование – это управление генами процессом развития отдельных клеток, тканей и органов.


Три зародышевые ткани являются исходным материалом в развитии всех органов. Так из эктодермы развиваются нервная система, глаза, наружный слой кожи. Мезодерма дает начало мышцам, скелету, кровеносной системе, почкам. Энтодерма образует почти весь пищеварительный тракт, печень, легкие, поджелудочную железу.


?Развивающийся в утробе матери зародыш хорошо защищен от внешних воздействий, но, тем не менее, внешние факторы могут играть заметную роль в эмбриональном развитии. Для правильного развития зародыш должен получать все необходимые витамины, макро- и микроэлементы, а также полный набор аминокислот. Вместе с тем нормальное развитие может быть нарушен многими неблагоприятными факторами, к которым относятся табачный дым, содержащий около сорока токсичных веществ, этиловый спирт, наркотические вещества, химические пищевые добавки (красители, эмульгаторы, ароматизаторы и пр.), проникающее электромагнитное излучение, тяжелые металлы (свинец, кадмий, ртуть и др.). Большинство из перечисленных факторов обладают сильно выраженным мутагенным эффектом. Мутации на


44


ранних стадиях эмбриогенеза вызывают появление уродств, нарушение развития центральной нервной системы и могут приводить к гибели зародыша.


3.2. ПОСТЭМБРИОГЕНЕЗ


Постэмбриогенез или послеэмбриональное развитие – это развитие от раждения или вылупления до смерти. Для человека выделяют 11 этапов послеэмбрионального развития (таблица 2).Каждый этап характеризуется специфическими особенностями строения и функционирования как организма в целом, так и его отдельных частей. Рассмотрим некоторые из периодов развития человека.


Новорожденный заметно отличается от взрослого человека пропорциями тела. Так, он имеет относительно короткие конечности, но крупную голову и туловище. Начиная с раннего детства рост головы замедляется, а рост конечностей усиливается. Во все периоды детства рост ребенка происходит главным образом за счет роста конечностей. Вместе с тем в детстве продолжается увеличение головного мозга, растет сердце и мышечная масса туловища и конечностей, заканчивается формирование легочной ткани. По мере развития головного мозга ребенок овладевает членораздельной речью.


Начиная с подросткового возраста рост, осуществляется, прежде всего, за счет роста туловища. В этот период происходит интенсивное развитие мышц кистей рук. Движения рук и пальцев становятся точными. В связи с усложнением двигательной деятельности, заканчивается и развитие нервных клеток коры больших полушарий головного мозга. В подростковом возрасте завершается смена молочных зубов. Для подросткового возраста характерно интенсивное формирование половой системы, поэтому развитие многих систем органов приобретают все более выраженные половые различия. Так в начале подросткового периода у мальчиков наблюдается отставание в темпах роста. К концу подросткового периода мальчики перегоняют девочек в росте, а также, начиная с 15-летнего возраста, масса мальчиков превышает массу девочек.


45


Таблица 2. Этапы постэмбрионального развития человека.


 

Новорожденный


-


1-10 дней


 

 

грудной возраст


 

1-0 дней-1 год


 

 

раннее детство


 

1-3 года


 

 

первое детство


 

4-7 лет


 

 

второе детство


 

8-12 лет


мальчики


 

 

 

8-11 лет


девочки


 

подростковый возраст


 

13-16 лет


мальчики


 

 

 

12-15 лет


девочки


 

юношеский возраст


 

17-21 год


юноши


 

 

 

16-20 лет


девушки


 

зрелый возраст, 1 период


 

22-35 лет


мужчины


 

 

 

22-35 лет


женщины


 

зрелый возраст, 2 период


 

36-60 лет


мужчины


 

 

 

36-55 лет


женщины


 

пожилой возраст


 

61-74 года


мужчины


 

 

 

56-74 года


женщины


 

старческий возраст


 

75-90 лет


 

 

Долгожители


 

90 лет и выше


 


В юношеском возрасте рост, как правило, заканчивается. Прекращение роста связано с усилением процессов дифференциации клеток, тканей, органов и целых систем органов. В этот период окончательно формируются опорно-двигательная, половая, кровеносная системы.


4. ГЕНЕТИКА


Генетика – это биологическая наука, изучающая наследственность и изменчивость организмов.


4.1. ИЗМЕНЧИВОСТЬ


?Изменчивость – это свойство всех живых организмов изменять свои признаки. Изменчивость принято разделять на два типа:


46


модификационную и наследственную.


^ 4.1.1. ТИПЫ ИЗМЕНЧИВОСТИ


Модификационной называют изменчивость, не передающуюся по наследству. Модификационная изменчивость затрагивает только фенотип - совокупность всех признаков и свойств организма, не влияя на состав генов. Она имеет следующие свойства.


Адаптивный (приспособительный) характер. Любая модификационная изменчивость является приспособлением организма к изменяющимся условиям среды. Например, низкие температуры вызывают развитие у тетеревиных птиц дополнительного оперения, а у млекопитающих – увеличение густоты шерсти. Изменение густоты покрова способствует сохранению тепла.


Групповой характер проявления: в определенных условиях не одна особь, а все особи (одного вида, рода или другой систематической группы) будут иметь одинаковую изменчивость. Например, при содержании нескольких лаек зимой на улице, изменится густота подшерстка не у одной собаки, а у всех. Выращивание растений на влажной теплой почве приводит к развитию крупных листьев.


Наследственной (генотипической) называют изменчивость, передающуюся по наследству. Наследственная изменчивость затрагивает не только фенотип, но и генотип - совокупность генов организма. Она имеет следующие свойства.


Случайный, как правило, неадаптивный характер проявления. Например, облучение жестким ультрафиолетом куколки плодовой мухи может вызвать появление самых разнообразных признаков, например, укороченные крылья. Хотя данный признак никак не влияет на выживаемость мухи в условиях облучения.


Индивидуальный характер проявления. В одинаковых условиях среди особей одного вида могут возникать различные наследственные изменения. Так облучение рентгеновскими лучами зародышей лисят может вызвать такие изменения как: вислоухость, шестипалость, сросшиеся пальцы и другие наследственные нарушения.


47


Наследственная изменчивость представлена следующими формами.


Рекомбинантная изменчивость – это разновидность наследственной изменчивости, при которой новые признаки появляются в результате изменения сочетаний уже имеющихся в генотипе генов. Источником рекомбинантной изменчивости является кроссинговер.


Мутационная изменчивость – это такая разновидность наследственной изменчивости, при которой появляются качественно новые гены (генные мутации), структурные изменения отдельных хромосом (хромосомные мутации) или изменение целого хромосомного набора (геномные мутации). Причиной мутационной изменчивости являются так называемые мутагенные факторы среды. К наиболее известным относятся высокая температура, жесткое ультрафиолетовое и рентгеновское излучение, гамма-лучи, бетта- и альфа-частицы, нитраты, эпоксиды, никотин.


^ 4.1.2. НОРМА РЕАКЦИИ


Нормой реакции называется степень реагирования организма в ответ на внешние факторы среды, или степень модификационной изменчивости. В отличие от самой модификационной изменчивости, норма реакции является наследуемым признаком. Рассмотрим следующий пример. Известно, что скармливание корнеплодов увеличивает надои молока крупного рогатого скота. Изменение надоев в данном случае является типичным примером модификационной изменчивости. Однако, замечено, что одинаковое количество корнеплодов в разной степени влияет на удои разных коров. Наиболее увеличивается количество молока у коров молочных пород. Да и среди животных одной породы степень выраженности реакции также различна. Тоже можно сказать и про уменьшение в рационе корнеплодов: у различных животных в различной степени будет выражено уменьшение надоев.


Таким образом, величина надоя хоть и является модификационной изменчивостью со свойственной ей групповой формой проявления, но степень этой изменчивости строго индивидуальна


48


для каждой коровы. Иными словами норма реакции является индивидуальным свойством организма.


Изучение нормы реакции демонстрирует различную широту изменения этого признака. Про организм с широкими пределами изменений какого-либо модификационного признака говорят, что он имеет широкую норму реакции, а про организм с небольшими возможными изменениями – узкую норму реакции.


^ 4.1.3. ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ


?Закон гомологических рядов был выведен выдающимся отечественным генетиком Н.И. Вавиловым в 1920 году на злаковых растениях. Однако этот закон имеет общебиологическое проявление. Он гласит: близкородственные виды и роды имеют сходный набор наследственных изменений.


Открытый Вавиловым закон имеет большое значение в сельском хозяйстве. Зная, какие наследственные изменения и с какой вероятностью встречаются среди особей одного хорошо изученного сорта растений или породы животных, селекционеры предсказывают появление подобных изменений и среди близкородственных малоизученных сортов или пород. Сам Н.И. Вавилов успешно использовал этот закон в своей практической деятельности. Он изучил направление наследственной изменчивости диких предков многих культурных растений, что позволило ему при выведении новых сортов растений, предсказывать предрасположенность растений к тем или иным наследственным изменениям.


4.2. НАСЛЕДСТВЕННОСТЬ


?Наследственность – это фундаментальное свойство всего живого, которое заключается в том, что все живые организмы способны хранить информацию о своем строении и передавать эту информацию другим поколениям. Человечество проделало долгий и нелегкий путь, чтобы правильно понять причины и законы наследственности.


^ 4.2.1. ЗАКОНЫ НАСЛЕДСТВЕННОСТИ


?Основные законы наследственности открыл и описал в 1865 году чешский ученый Грегор Иоган Мендель. К сожалению, от-


49


крытые Менделем законы, не оказали ни какого влияния на развитие биологии, так как не были понятыми учеными прошлого века. Они были переоткрыты спустя 35 лет независимо работающими учеными из Голландии, Германии и Австрии, но были названы в честь их первооткрывателя.


Методические предпосылки открытия законов Менделя


?Мендель около семи лет занимался выращиванием различных сортов гороха, скрещивал их между собой и описывал результаты своих наблюдений. Для открытия законов наследственности Мендель использовал следующие методические приемы.


Изучал аллельные признаки , то есть такие признаки, которые взаимоисключают друг друга в одном организме (горох с желтыми или зелеными горошинами, а также с гладкими или морщинистыми горошинами).


Использовал метод гибридизации , то есть скрещивание особей отличающихся по одной паре аллельных признаков ( моногибридное скрещивание ) или по двум парам аллельных признаков ( дигибридное скрещивание ).


Использовал для скрещивания чистые линии родительских форм. Чистой линией называют группу особей, которая не дает расщепления признаков при длительном скрещивании особей внутри этой группы.