Учебное пособие для 10-11 классов
Вид материала | Учебное пособие |
Содержание1.3. Ген, принцип генетического кодирования 1.4. Строение клетки 1.5. Клеточный цикл |
- Учебное пособие для учащихся 10 (11) классов «Экология Москвы и устойчивое развитие», 879.38kb.
- Г. Я. Солганик стилистика текста учебное пособие, 2922.8kb.
- Учебное пособие для учащихся 5 класса, 1780.81kb.
- Перова Инесса Николаевна Теория и практика написания сочинения учебное пособие, 811.45kb.
- Указатель Биология Абрахина Н. О. Заповедники России: учебное пособие для учащихся, 1097.35kb.
- Пояснительная записка Состав учебно-методического комплекса. Исследование информационных, 69.4kb.
- Учебное пособие для 9-11 классов общеобразовательных учреждений, 2033.21kb.
- Учебное пособие, 2003 г. Учебное пособие разработано ведущим специалистом учебно-методического, 783.58kb.
- Учебное пособие, 2003 г. Учебное пособие разработано ведущим специалистом учебно-методического, 454.51kb.
- Учебное пособие, 2003 г. Учебное пособие разработано ведущим специалистом учебно-методического, 794.09kb.
Циклическое фосфорилирование : запасается энергия электрона, возбужденного светом (при фотосинтезе).
Гликолитическое фосфорилирование : запасается энергия бескислородного расщепления молекулы глюкозы (при гликолизе).
Окислительное фосфорилирование: запасается энергия окис-
15
ления кислородом молекул молочной кислоты (при дыхании).
^ 1.3. ГЕН, ПРИНЦИП ГЕНЕТИЧЕСКОГО КОДИРОВАНИЯ
?Все признаки организма, его свойства прямо или косвенно связаны с белками, входящими в состав его органов, тканей, каждой клетки. Как мы уже знаем, организмы состоят не только из белков, а из множества других веществ, например жиров, жироподобных веществ, углеводов, нуклеиновых кислот и других органических и неорганических веществ. Однако все органические, а также некоторые неорганические вещества образуются в клетке только благодаря ферментативной роли белков. Иными словами, наличие или отсутствие в организме какого-либо вещества зависит от того, есть ли в этом организме определенный фермент (или несколько ферментов) который обеспечивает синтез такого вещества. Следовательно, можно сказать, что все индивидуальные свойства организма связаны со строго индивидуальным набором определенных белков. В организме человека, например, синтезируется до 100 000 различных белков. Каким же образом все живые существа на земле передают своему потомству признаки строения, особенности развития, дыхания, питания, размножения... Очевидно, что для достижения такой цели достаточно уметь передавать другим поколениям информацию о строении своих белков. Природа около двух с половиной миллиардов лет назад научилась это делать. Структура любого белка зашифрована в молекуле ДНК (или РНК у некоторых вирусов). Участок ДНК, в котором закодировано строение одного белка называется геном . В молекуле ДНК множество генов, следовательно, столько же и белков закодировано. Не трудно догадаться, что в ядре клетки человека содержатся около 100 000 генов. Каков же –принцип генетического кодирования строения белка?
Мы знаем, что белки образованы длинными цепочками из аминокислот, а гены – цепочками из нуклеотидов. Если допустить, что один нуклеотид кодирует одну аминокислоту, то мы можем ожидать белки, состоящие всего из четырех различных аминокис-
16
лот, поскольку в ДНК встречаются четыре разновидности нуклеотидов ( А, Т, Ц, Г ). Но в состав белков входят 20 различных аминокислот, следовательно, в природе должно существовать не менее 20 различных единиц кода (кодонов). Предположим, что единицей кода (кодоном) является не один нуклеотид, а определенное сочетание из двух нуклеотидов. Например, сочетание АА кодирует одну аминокислоту, сочетание АТ – другую, сочетание ТА – третью и так далее. В этом случае подсчет возможных сочетаний таких дуплетов (пар) нуклеотидов показывает, что общее их число будет 16, что так же недостаточно для кодирования двадцати аминокислот.
?Для обеспечения всего многообразия белков, в состав которых входят до 20 различных аминокислот, природа выработала триплетный принцип кодирования наследственной информации. Он встречается у всех живых форм населяющих нашу планету! Триплетный принцип кодирования заключается в том, что единицей кода является сочетание из трех нуклеотидов. Такой триплетный кодон кодирует одну аминокислоту. Однако четыре нуклеотида дают нам 64 сочетания по три, то есть единиц кода больше, чем необходимо почти в три раза. Следовательно, для кодирования одной аминокислоты можно использовать три и даже более кодонов. Так и происходит в природе (см. таблицу 1). Однако не может быть обратного, то есть, какой либо триплет не может кодировать более одной аминокислоты, так как в этом случае смысл кодирования был бы полностью нарушен, допускалась бы замена аминокислот при синтезе одного белка, а, следовательно, и свойства белка в разное время синтеза менялись. В этих условиях была бы невозможной передача наследственной информации новым клеткам и организмам. Так мы определили два важнейшие свойства генетического кода:
Вырожденность кода – кодирование какой-либо аминокислоты, несколькими различными триплетами,
Специфичность кода – кодирование каким-либо триплетом строго определенной аминокислоты.
17
Таблица 1 . Примеры некоторых аминокислот и кодонов, их кодирующих. (Кодоны, как и принято, будем записывать начальными буквами нуклеотидов информационной РНК, а не ДНК).
Аминокислоты
Обозначения
Кодирующие триплеты
Валин
Вал
ГУУ, ГУЦ, ГУА
Лейцин
Лей
УУГ, ЦУГ, ЦУЦ
Аланин
Ала
ГЦУ, ГЦЦ, ГЦА
Серин
Сер
УЦУ, АГУ, АГЦ
Глицин
Гли
ГГА, ГГЦ, ГГГ, ГГУ
Аргинин
Арг
ЦГА, АГА, АГГ, ЦГГ
Гистеин
Гис
ЦАУ, ЦАЦ, ЦАА
Воспользовавшись таблицей 1 проиллюстрируем принцип триплетного генетического кодирования на рисунке 4.
Участок и-РНК: ГУУГЦУГУЦГГАЦГАЦГАЦАЦГГЦ
Участок: белка Вал – Ала – Вал – Гли – Арг – Арг – Гис – Гли
Рисунок 4 . Принцип генетического кодирования на примере участка информационной РНК, кодирующей белок.
^ 1.4. СТРОЕНИЕ КЛЕТКИ
?Клетки всех живых существ на земле можно поделить на два принципиально разных типа: ядерные (эукариотические) и безъядерные (прокариотические). Прокариотические клетки – самые древние на нашей планете, это клетки бактерий и синезеленых водорослей. Для них характерны следующие черты:
Отсутствие ядра.
Наличие ДНК кольцевого вида.
Многократное повторение одинаковых генов в ДНК.
18
Отсутствие самоделящихся органелл клетки: центриолей, митохондрий, пластид.
Деление клетки путем амитоза (прямого деления).
Из эукариотических клеток образованы организмы растений, грибов и животных. Они появились позднее прокариот. Для них характерны такие признаки как:
Наличие ядра, где всегда находятся молекулы ДНК. Некоторые клетки вторично утрачивают ядро (эритроциты млекопитающих и тромбоциты).
ДНК всегда в виде одной или нескольких нитей, незамкнутых на концах.
Гены в каждой молекуле ДНК, как правило, не повторяются.
В клетках всегда имеются самоделящиеся органеллы, обладающие собственными молекулами ДНК(!): центриоли, митохондрии, пластиды. Последние встречаются только в растительных клетках.
Деление клетки путем митоза (непрямого деления), в результате которого все гены равномерно распределяются между новыми клетками.
Эукариотические клетки в десятки и сотни раз крупнее прокариотических.
Рассмотрим более подробно строение эукариотической клетки.
Клетка имеет мембрану, цитоплазму и ядро.
МЕМБРАНА – органелла клетки, имеющая четырехслойное строение. Наружный и внутренний слои белковые. Между ними лежат два слоя из жироподобных веществ – липоидов. Один из концов молекулы липоида имеет хорошо выраженные гидрофобные свойства. В мембране все липоиды расположены так, что своими гидрофобными концами каждый слой сориентирован в противоположную сторону от другого. В разных местах клеточной мембраны встроены особые крупные молекулы белков, которые занимают всю ее толщину. Мембраны многих клеток снаружи покрываются дополнительными защитными оболочками, состоящи-
19
ми либо из углеводов (например, из целлюлозы в растительных клетках), либо из сложных веществ – глюкопротеидов (пелликула инфузорий и жгутиконосцев). Здоровье клетки, длительность ее жизни во многом зависят от состояния мембраны.
Свойства мембран.
Полная проницаемость для воды. Мембрана всегда пропускает воду внутрь клетки или наружу, в зависимости от того, где концентрация воды больше. Такое движение вещества из области высокой его концентрации в область более низкой называется диффузией . Диффузия вещества не требует затрат энергии.
Избирательная проводимость растворенных веществ:
Отрицательно заряженные частицы быстрее и легче проникают через мембрану.
Вещества растворимые в жирах легче проникают через мембрану, чем вещества растворимые в воде.
Мелкие молекулы легче проникают через мембрану, чем крупные.
Активный транспорт веществ. Некоторые вещества способны проникать через мембрану в направлении обратном их диффузии, то есть из места низкой в место с более высокой концентрацией. Путем активного транспорта из клетки постоянно выводится избыток ионов натрия, водорода и хлора. А фосфаты, глюкоза, аминокислоты, наоборот активно проникают в цитоплазму. Активный транспорт всегда сопряжен с затратой энергии.
Мембрана в процессе жизнедеятельности клетки может частично утрачиваться, в результате образования пищеварительных вакуолей (пузырьков).
Мембрана регулярно восстанавливается в результате работы специальных органелл, синтезирующих мембранные вакуоли. Эти вакуоли УвлипаютФ в любом месте клеточной мембраны, восстанавливая ее прежние размеры и свойства.
Многие мембраны, не покрытые плотными оболочками, способны образовывать временные выросты, называемые ложноножками (псевдоподиями).
20
Функции мембран:
Фагоцитоз – захват ложноножками твердых частичек пищи. В результате образуется пищеварительная вакуоль, плавающая в цитоплазме.
Пиноцитоз – поглощение растворенных веществ.
Защитная. Мембрана защищает клетку от проникновения в нее чужеродных, опасных веществ.
Дыхательная. Через мембрану в клетку поступает кислород, а выделяется углекислый газ.
Гомеостатическая. Гомеостаз – это способность поддерживать относительно постоянным свой состав. Благодаря своим свойствам (избирательному поглощению веществ и активному транспорту) мембрана обеспечивает клетке постоянство своего состава.
Интегративная. Клетки контактируют между собой при помощи мембран. Через мембрану одна клетка может передавать различную информацию другой клетке. Эта информация может передаваться как при помощи электрических импульсов, так и при помощи химических веществ (гормонов, медиаторов).
ЦИТОПЛАЗМА – клеточный сок, клеточная жидкость. Содержит воду, растворенные в ней неорганические и органические вещества, а также различные обособленные структуры, называемые органеллами:
Рибосомы – органеллы клетки, состоящие из двух частиц крупной и мелкой. Каждая частица образована белками и рибосомальной РНК. Рибосомы осуществляют синтез белка. Синтезируются в ядре.
Эндоплазматическая сеть (ЭПС) – мембранная органелла клетки, представляющая многочисленные каналы и полости из мембран, по структуре сходной с мембраной клетки. По строению и функциям делится на два типа: шероховатая ЭПС - содержит на поверхности рибосомы и является местом синтеза белков; гладкая ЭПС – не содержит рибосом, является местом синтеза углеводов, липоидов и жиров. Снаружи ЭПС контактирует с мембраной клетки, внутри – с мембраной ядра.
21
Аппарат Гольджи – по расположению является участком эндоплазматической сети. Имеет мембранную структуру. Выглядит как скопление многочисленных мешочков, полостей, вакуолей. Выполняет множество функций:
Доводит белки до окончательной рабочей формы, например УсшиваетФ некоторые белки в крупные белковые комплексы, присоединяет к некоторым белкам необходимые ионы металлов.
Образует мембранные пузырьки, которые, покидая комплекс Гольджи либо УреставрируютФ клеточную мембрану, либо превращаются в лизосомы.
Лизосомы – мембранные органеллы клетки, представляющие микроскопические пузырьки, наполненные пищеварительными ферментами. Выполняют пищеварительную и защитную функции. Могут слипаться с пищеварительной вакуолью, изливая в нее пищеварительные ферменты. При контакте клетки с чужеродным веществом или с чужой клеткой лизосомы слипаются с клеточной мембраной, выделяя свои ферменты во вне клетки. Ферменты лизосом могут также принимать участие в Узапрограммированной смертиФ собственной клетки.
Митохондрии – мембранные самоделящиеся органеллы. Образованы двумя слоями мембран: наружной гладкой и внутренней, имеющей многочисленные выросты внутрь митохондрии. Такие выросты внутренней мембраны называются кристами . В них протекает процесс окисления молочной кислоты, в результате которого выделяется энергия, запасаемая в виде АТФ (окислительное фосфорилирование). Следовательно, важнейшая функция митохондрий – энергетическая. Митохондрии имеют собственные молекулы ДНК, которые по строению не отличаются от ДНК бактерий. Размножаются митохондрии, как и бактерии, прямым делением.
Пластиды - мембранные самоделящиеся органеллы клеток. В отличие от всех органелл, рассмотренных выше, пластиды встречаются только в растительных клетках. По строению напоминают
22
митохондрии: образованы двумя мембранами наружной гладкой и внутренней, образующей многочисленные плоские выросты - тилакоиды . Все тилакоиды расположены стопками наподобие стопок монет. Каждая стопка называется граной . Между гранами находится внутренняя жидкость пластида называемая стромой . В ней находится собственная ДНК, строением напоминающая бактериальную. Размножаются пластиды подобно бактериям прямым делением. По особенностям строения выделяют три типа пластид:
Хлоропласты – зеленые пластиды. В мембранах тилакоидов содержится зеленый пигмент хлорофилл, обеспечивающий процесс фотосинтеза. Встречаются хлоропласты во всех зеленых частях растений (листьях, побегах, незрелых плодах).
Хромопласты – пластиды, содержащие жироподобные пигменты, окрашивающие клетку в желтый, оранжевый, красный цвета. Встречаются в созревших плодах растений, придавая им соответствующую окраску, а также осенью в листьях листопадных деревьев.
Лейкопласты - бесцветные пластиды. На внутренней мембране они не содержат никаких пигментов. В клетке отвечают за синтез и накопление полисахаров (крахмала). В большом количестве встречаются в клетках подземных побегов (клубнях картофеля, топинамбура), а также в плодах и семенах.
?Превращения пластид. Хлоропласты легко могут перерождаться в другие типы пластид. Мы наблюдаем это при пожелтении и покраснении созревающих плодов или листьев осенью. В темноте хлоропласты способны обесцвечиваться, превращаясь в лейкопласты. Однако эти процессы необратимы: лейкопласты и хромопласты никогда не превращаются обратно в хлоропласты.
Центриоли - самоделящиеся органеллы клеток животных и некоторых низших растений. Каждая центриоль состоит из короткого полого цилиндра, стенки которого образованы микротрубочками, расположенными вдоль оси цилиндра. Центриоли содержат белки и небольшое количество РНК. В клетке имеется две пары центриолей. В каждой паре центриоли расположены перпендику-
23
лярно друг другу.
?Центриоли принимают участие в делении клеток: они образуют длинные белковые нити, так называемое веретено деления .
^ 1.5. КЛЕТОЧНЫЙ ЦИКЛ
?Жизнь клетки с момента ее появления в результате деления до начала следующего деления или смерти называется клеточным циклом . У разных клеток продолжительность клеточного цикла различна. Так, клетки эпителия кишечника млекопитающих живут 10-30 часов, эритроциты – 3 месяца, нервные клетки имеют клеточный цикл продолжительностью жизни организма. Клеточный цикл состоит из четырех, следующих друг за другом периодов: периода роста ( G 1 ), синтетического периода ( S ), периода подготовки к делению ( G 2 ) и митоз ( M ).
В период роста происходит увеличение размеров клетки после ее появления в результате деления материнской клетки. В этот период в клетке образуются молекулы и-РНК, а затем - белки и другие органические вещества, необходимые для жизни клетки и всего организма.
В синтетический период происходит удвоение (редупликация) ДНК. Одновременно заканчивается синтез и-РНК.
В период подготовки к делению в клетке начинается синтез специальных белков, а так же молекул РНК, необходимых предстоящего деления. В частности в этот период происходит образование веретена деления.
После периода подготовки деления наступает само деление, например, митоз . После митоза каждая новая клетка вступает в свой период роста, таким образом, начинается жизнь новых клеток, то есть начинаются новые клеточные циклы.
В клеточном цикле любой клетки переход из одного периода в другой представляет собой процесс, регулируемый специальными белками. Если клетка повреждается на одном из этапов развития, то она не переходит на другой этап. В такой клетке начинают происходить восстановительные процессы (репарация) Уиспор-
24
ченныхФ структур (например, молекул ДНК). Если восстановление не происходит, то клетка вступает на путь Узапрограммированной смертиФ, которая осуществляется при помощи собственных ферментов. Рассмотрим две разновидности клеточного деления митоз и мейоз.
1.5.1. МИТОЗ
Митоз - это непрямое деление клетки, в результате которого исходная клетка дает начало двум новым, имеющим совершенно одинаковый набор генов.
Митоз длится 1-2 часа и протекает в четыре фазы, из которых самыми продолжительными являются первая и последняя.
Фазы митоза.
Профаза. Наблюдается конденсация хроматиновых нитей, то есть их упаковка. Образуются хорошо заметные в световой микроскоп (при специальном подкрашивании) утолщенные хромосомы. Синтез РНК и белков заканчивается. Разрушается оболочка ядра. Образуется веретено деления.
Метафаза. Все хромосомы перемещаются в центр клетки, располагаясь по ее экватору. Каждая хромосома состоит из двух хорошо различимых дочерних хроматид , образованных дочерними ДНК, появившихся в результате редупликации материнской. Любая пара дочерних хроматид связывается между собой тонким перехватом, называемым центромерой. Это участок материнской ДНК, в котором редупликация еще не прошла. К каждой центромере присоединена своя нить веретена деления.
Анафаза. Дочерние хроматиды отделяются друг от друга в результате редупликации центромер и быстро расходятся к противоположным полюсам клетки. Теперь на каждом полюсе находится свой набор хроматид. Оба этих набора содержат одинаковые гены, так как все дочерние хроматиды, образованные в ходе редупликации материнской ДНК являются копиями друг друга.
Телофаза. На полюсах клетки хроматиды раскручиваются в хроматиновые нити. Возобновляется синтез РНК и белков. Вокруг
25
каждого набора из дочерних хроматид формируются свои ядерные оболочки. Клетка перешнуровывается по экватору. Образуются две новые клетки.
Биологическое значение митоза.
?В результате митотического деления появляются две клетки генетически абсолютно одинаковые. Это возможно только благодаря двум процессам:
редупликации ДНК, в основе которой лежит принцип комплиментарности.
расхождении каждой пары дочерних хроматид в новые клетки.
Митотическое деление клеток встречается:
при бесполом размножении растений грибов и животных,
при эмбриональном и постэмбриональном развитии всех многоклеточных организмов из оплодотворенной яйцеклетки,
при заживлении ран, образовании клеток крови, нарастании клеток кожного и кишечного эпителия и др. процессах.
1.5.2. МЕЙОЗ
Мейоз - это деление созревания половых клеток, в результате которого из диплоидной клетки образуются гаплоидные. Состоит из двух, следующих друг за другом делений, каждое из которых включает четыре фазы. Клетка, вступившая в мейоз, имеет удвоенный, диплоидный, набор хромосом. Каждая хромосома состоит из двух дочерних хроматид, образованных в результате предшествующей мейозу редупликации ДНК.
Первое деление мейоза.
Профаза-1 . Самая уникальная фаза мейоза. Она включает в себя события как сходные с событиями митотического деления, так и специфические для мейоза. В этой фазе разрушается ядерная оболочка. Хроматиды конденсируются, образуя хромосомы. Начинает формироваться веретено деления. Вместе с тем в профазе 1 происходят следующие процессы:
Конъюгация гомологичных хромосом – это тесное сближение каждой пары гомологичных хромосом по всей их длине. Поскольку каждая хромосома состоит из двух дочерних хрома-
26
тид, то в результате конъюгации образуется так называемая тетрада хроматид (от греческого слова Уа Ф - четверка).
Кроссинговер (перекрест) – обмен участками гомологичных хроматид в тетрадах. Этот процесс протекает в любом месте любой тетрады с одинаковой вероятностью. Причем в период профазы –1 возможно протекание кроссинговера на одном и том же участке два и более раз. Очевидно, что при повторении кроссинговера четного числа раз на одном участке тетрады никаких изменений в генетическом наборе гомологичных хромосом не произойдет, так как участки гомологичных хроматид вновь вернутся на прежние места. В противном же случае, гомологичные хроматиды обменяются генами, изменится сочетание генов в хроматидах, то есть произойдет рекомбинация генов .
Метафаза 1. По экватору клетки выстраиваются тетрады хроматид (конъюгированные пары гомологичных хромосом). Нити веретена деления связываются с центромерами тетрад.
Анафаза 1. Расхождение гомологичных хромосом к полюсам клетки. Однако кроссинговер изменил некоторые из хроматид: теперь хроматиды материнских хромосом могут иметь участки отцовских (гомологичных) хроматид, а некоторые хроматиды отцовских – соответствующие участки материнских.