Вода знакомая и незнакомая

Вид материалаРеферат

Содержание


Объёмный или (титрометрический метод
Инверсионная вольт-амперометрия
Xiii источники водоснабжения.
Атмосферные воды.
Поверхностные (наземные) воды
Подземные воды
Примеси воды под вооруженным взглядом.
1 .Вещества, имеющие положительное физиологическое значение.
Фтор. Содержание этого элемента в природных водах колеблется от сотых долей миллиграмма в 1л
Вещества, оказывающие токсическое действие.
Нефть и нефтепродукты.
Нитраты (ионы азотной кислоты)
Радиоактивные вещества.
Xiv промышленная очистка воды
Подобный материал:
1   2   3   4   5   6   7   8
На практических занятиях факультатива по химии в школе №8 была исследована вода, взятая из разных источников: вода из колодца, речная вода, взятая в парке и около очистных сооружений, водопроводная воду из больницы, сравнивали с дистиллированной водой, взятой из аптеки. Анализировали качество воды по следующим показателям: цветность, запах, прозрачность, реакция среды, содержание ионов хлора (CL-), сульфат ионов (SO42-), ионов железа (Fe2+, Fe3*).

Результаты показали, что все воды имеют цвет светло-коричневый или желтоватый, следовательно, содержат ионы железа, что подтверждалось качественными реакциями. Среда в растворах была разная.

Если рН-водородный показатель равен 7, то среда нейтральная, если меньше 7-кислая, >7-щелочная среда. В речной воде, взятой у очистных сооружений, рН=3-4-то есть кислая среда. Допустимые уровни рН 6-9. В остальных водах рН в норме. Все воды содержат хлорид ионы, сульфат ионы.

Более глубокий анализ воды в городе Волхове проводится в СЭС Оказывается, в воде может быть растворено до 980 наименований веществ.

Для их распознавания используются следующие методы:

I. Фотокалориметрия - распознаёт концентрацию и содержание определённых веществ по цвету, сравнивая его с эталоном.

П. Объёмный или (титрометрический метод)
  1. Весовой метод. Содержание примесей в воде определяется с помощью специальных весов с точностью до 0,01г. А есть весы, где с точностью до 5-го знака после запятой.
  2. Патенциометрический метод-(иономер)-где специальные мембраны или пористые материалы отбирают определённые ионы.
  3. Инверсионная вольт-амперометрия. Аппарат, который работает с помощью компьютера, на котором определяется наличие редких элементов: As, Zn, Cu, Cd, Co, Pb (мышьяк, цинк, медь, кадмий, кобальт, свинец).

С помощью фотокалориметрии нам определили содержание железа в воде, взятой из больницы. Она оказалась равной 5,77 мг/л, при допустимой концентрации не более 0,3 мг/л. Для того чтобы сберечь своё здоровье надо пить очищенную воду.


XIII ИСТОЧНИКИ ВОДОСНАБЖЕНИЯ.


Теперь давайте разберемся, откуда собственно берется та вода, которая поступает к нам в дом. и которую мы пьем, т.е. поближе познакомимся с источниками водоснабжения.

Атмосферные воды.

Это та вода, которая поступает с осадками (снег и дождевая вода). Для водоснабжения она используется крайне редко, пожалуй, только на юге и на Крайнем Севере. Однако и в средних широтах существуют люди, которые собирают дождевую воду для питья и приготовления пищи, считая ее особенно чистой и полезной. Хочется обратить внимание читателей, что чистота дождевой воды это миф. При прохождении через толщу воздуха атмосферная вода растворяет газы, входящие в его состав, захватывает пылевые частицы и другие аэрозоли, обогащается микроорганизмами.

Наибольшее содержание различных примесей в атмосферной воде наблюдается в засушливых районах, а также в зоне промышленных городов, воздух которых обычно загрязнен как химическими веществами, так и микроорганизмами. В некоторых случаях атмосферная вода в городах содержит свыше 450 мг/л взвешенных и растворенных веществ. При этом основным ингредиентом, как правило является ион серной кислоты (SO42-).

Поверхностные (наземные) воды

К поверхностным относятся воды океанов, морей, озер, рек, ручьев, прудов и т.д. На сегодняшний день это основной источник водоснабжения городов и. к сожалению, не самый лучший. Эта вода вбирает в себя все виды поверхностных загрязнений, химические выбросы, патогенные микроорганизмы - в общем все, что приносит с собой хозяйственная и промышленная деятельность человека. Затем часть этих загрязнений осаждается, часть разбавляется, что-то реагирует между собой. А потом весь этот химический бульон попадает в водозаборные сооружения. Конечно, часть вредных примесей удаляется при очистке в очистных сооружениях или их содержание теми или иными способами доводится до концентраций, разрешенных санитарными нормами. Но это только в идеальных случаях. К сожалению, у нас в стране выделяется слишком мало средств на оснащение и поддержание работоспособности очистных сооружений. Так что в реальности, станции уже давно не справляются с возрастающими требованиями, которые к ним предъявляются.

Подземные воды

Подземные воды пропитывают толщу земной коры примерно до глубины 13-14 км, заполняй поры, трещины и пустоты в виде тончайших пленок, капель, стр\й и даже потоков. Подземные воды чаще всего бывают доброкачественными. Располагаясь на глубине, они меньше загрязняются различного рода нечистотами, хотя и не гарантируют их полное отсутствие.

Следует отметить, что область питания водоисточника может находиться за десятки и сотни километров от точки водозабора. Подземные воды делят на грунтовые и межпластовые.

Грунтовые воды залегают на первом водоупорном слое. Образуются они в результате фильтрации через почву и грунт атмосферных и поверхностных вод. Эта вода используется большинством сельского населения, жителями небольших городов. Почвы этих населенных пунктов, будучи, как правило, загрязнены органическими веществами животного происхождения и микробами, соответственно загрязняют ими и воду. Конечно, почвенная вода, фильтруясь через грунт, оставляет в нем некоторые растворенные вещества, в частности, постепенно освобождается от органических соединений, микроорганизмов и коллоидных частиц и обогащается минеральными веществами. Однако действительно хорошего качества очистки следует ожидать 'только при большой глубине залегания первого водоупорного слоя и при хорошей фильтрующей способности пород. К примеру, при наилучших условиях, от бактерий (а они являются довольно крупноразмерными примесями) вода освобождается только к глубине в 6 м.

Наиболее надежными с гигиенической точки зрения являются глубокие межпластовые воды. Залегают они в водопроницаемых породах, ниже первого водоупорного слоя, образуя несколько горизонтов, перекрытых сверху и подстилаемых снизу водоупорными слоями. Питание этих вод происходит за десятки и сотни километров от места накопления. Вследствие наклона подстилающих водоупорных слоев вода движется от области питания, освобождаясь от взвешенных частиц, бактерий и обогащаясь минеральными веществами и зачастую радиоактивным газом - радоном (о нем речь пойдет в разделе о вредных примесях). Хотя и здесь многое зависит от состава и характера водоносных пород. Наклонное расположение водоносных слоев обусловливает наличие гидростатического давления воды, заключенной между водоупорными пластами, поэтому при выходе на поверхность через скважины вода можс1 подниматься выше уровня поверхности земли, нередко образуя фонтан. Такую воду называют артезианской по имени французской провинции Артуа, носившей в древности название Артезия, где в XII веке была впервые в Европе получена фонтанирующая вода.

Примеси воды под вооруженным взглядом.

Единственной примесью, которую хотелось бы сохранить, являются растворенные в воде газы. Во многом они придают воде приятный освежающий вкус, и именно из-за их отсутствия в дистиллированной воде она совершенно безвкусна. С другой стороны, дистиллированная вода позволяет почувствовать истинный вкус чая или кофе, что понравиться гурманам. Кроме того, отсутствие примесей в -такой воде повышают способность к экстрагированию веществ, что также положительно сказывается при приготовлении отваров, напитков, супов и т.п.

А теперь давайте попробуем классифицировать все примеси в воде с 'точки зрения полезности или вреда для организма человека. Современная гигиена делит их на три больших группы :

1. вещества, имеющие положительное физиологическое значение;

2. вещества, обладающие токсическими свойствами;

3. вещества индифферентные.

Несколько особняком стоит еще один тип загрязнений. Это бактериальные загрязнения воды.

1 .Вещества, имеющие положительное физиологическое значение.

В эту группу следует отнести кальций и магний, а также большое число веществ, относящихся к так называемым микроэлементам. При этом значение воды в обеспечении микроэлементами выяснено лишь относительно йода и фтора. Что касается железа, меди, цинка и других микроэлементов, то их рассматривают как нежелательные ингредиенты природной воды.

Кальций. Чаще всего в воде присутствуют соли кальция природного происхождения, хотя не исключено попадание их с промышленными стоками. Положительную роль в кальциевом балансе в организме соли кальция могут играть только при несбалансированном питании. В сутки организму необходимо около 800 мг кальция, поэтому для того, чтобы покрыть эту потребность только за счет воды, потребуется выпить 8 литров при максимальной допустимой концентрацией кальция в ней (ПДК 100 мг/л). Таким образом, при употреблении 1.2 л (именно столько воды необходимо человеку в сутки в виде жидкости) - можно получить не больше 15% от нормы. Такое же количество кальция можно получить, съев 12 г твердого сыра, или 75 г творога или 75 г кураги, или выпив 700 мл молока. Как видите, не сложно обеспечить наш организм этим элементом, просто более полноценно питаясь. А уже окончательное решение о том. что лучше - добавить в свой рацион немного продуктов, употребляя чистую и безопасную воду, или получать кальций и другие микроэлементы из воды, одновременно подвергая себя риску за вами. Но соли кальция имеют еще одну неприятную особенность, о которой нельзя не упомянуть в этом обзоре. Это способность некоторых растворимых солей переходить в нерастворимые при нагревании.

При этом гидрокарбонатные соли кальция (также, как и магния) разлагаются с образованием воды, углекислого газа и нерастворимого карбоната кальция. Так образуется накипь. которая досрочно выводит из строя нагревательные элементы, начиная от чайников и тэнов стиральных машин и заканчивая котлами котельных. Кроме того, растворенный в воде кальций способен вступать в химические реакции со многими моющими средствами, нейтрализуя их и образуя нерастворимые соединения. А это в свою очередь приводит к увеличению расхода стиральных порошков. Вывод: соли кальция, являясь потенциально полезными для здоровья, могут приносить значительным материальный ущерб и неудобства. Если вы пользуетесь муниципальной системой водоснабжения, то трудно обеспечить декальцинирование всей используемой воды, но использование небольших систем (к примеру, обратноосмотических) не только допустимо, но и желательно при условии полноценного питания, а если у вас собственная скважина, то удаление кальция из всей поступающей в дом воды (умягчение) является вполне оправданным шагом. Впрочем, о различных методах и системах очистки воды мы поговорим чуть позже.

Йод. В природных пресных водах содержится в очень незначительных количествах, около 0,003 - 0,0089 мг/л, в морских 0,05 мг/л. Специальных норм содержания йода в питьевых водах нет. По некоторым данным низкая концентрация йода в воде может приводить к заболеваниям щитовидной железы. Но этот недостаток легко может коррегироваться пищей или употреблением специальной иодированной соли. В сутки человеку требуется примерно 0.1 мг. Если представить что мы пьем воду с максимальным содержанием йода (0.05 мг/л - гипотетический случай), то для покрытия нужд требуется выпить около 2-х литров такой воды. А для того чтобы обеспечить себе поступление йода взамен потерянного при очистке, достаточно съесть 6 г морской капусты, или 7.5 г печени трески, или 37-5 г хека или 40 г минтая. Но проще всего восполнить потенциальный недостаток поступления йода в организм - регулярно принимать качественные витаминно-минеральные препараты. К примеру, в одной таблетке качественных поливитаминов содержится около 0.15 мг йода, что составляет полторы необходимые суточные дозы, т.е. создает небольшой запас, и вместе с тем, не приводит к передозировке даже при длительном ежедневном приеме.

Фтор. Содержание этого элемента в природных водах колеблется от сотых долей миллиграмма в 1л до 5.0 и даже 12 мг/л. В подземных водах его больше, чем в поверхностных. В больших количествах фтор встречается в водах, добываемых в местностях, располагающих залежами фторапатитов. Кроме того, особенно в открытые водоемы, фтор может попадать с промышленными сточными водами.

Значение фтора для организма человека определяется его влиянием на формирование костей и в первую очередь - зубов. Содержание его в питьевой воде более 1,5 мг/л может вызывать заболевание, называемое флюорозом, внешним проявлением которого является пятнистость эмали зубов. При использовании воды, содержащей свыше 5 мг/л фтора, наблюдается флюороз скелета (остеофлюороз).

Недостаточное содержание этого микроэлемента в воде (меньше 0.5 мг/л) также нежелательно, так как способствует возникновению кариеса зубов.

Механизм действия фтора на зубы объясняется образованием более прочного и кислотоустойчивого фторапатита из гидроксиапатита, входящего в состав эмали зуба. Как показали исследования Скотта, Пикара и Др., замещение гидроксильной группы на фтор в кристаллической решетке гидроксиапатита может осуществляться и при местом воздействии (например, при использовании зубных паст, содержащих фтор). Кроме того, полностью восполнить фтор, потерянный при качественной очистке воды, можно съев 129 г скумбрии, или 258 г минтая или 263 г грецких орехов.

Медь. В природных водах содержание этого элемента относительно невелико (0,02 - 0,4 мг/л), но может значительно увеличиваться за счет промышленных сточных вод. Медь положительно влияет на многие процессы в организме человека, поэтому присутствие ее, если она природного происхождения, в определенных концентрациях в воде допустимо.

В сутки человеку требуется примерно 2 мг меди и с водой может быть получено не больше 60 % от этого количества. При этом компенсировать потери меди при очистке воды можно съев 32 г говяжьей печени, или 40 г свиной печени или 160 г гороха. Но опять же проще всего компенсировать возможный недостаток регулярно употребляя витаминно-минеральные комплексы. Одна таблетка препарата содержит около 2 мг меди, т.е. суточную норму.

Железо. Железо является истинным биоэлементом. В природных и в особенности в подземных водах встречается довольно часто, достигая в отдельных случаях 70 мг/л. Повышенное содержание железа в воде ведет к уменьшению прозрачности, появлению желто-бурой окраски и неприятного вяжущего привкуса воды.

В сутки человеку требуется около 10 мг железа, и, так как в водопроводной воде допускается его присутствие не больше 0,3 мг/л, необходимо выпивать в сутки около 33 литров жидкости, чтобы полностью восполнить эту потребность. Так что в реальной жизни мы получаем из воды не больше 3,6% суточной нормы. Восполнить эти потери проще простого, съев 1,8 г свиной печени, или 18 г абрикоса, или 12 г айвы, или, наконец, 19 г петрушки. В поливитаминах содержится около 14 мг железа в одной таблетке, т.е. полностью перекрывает суточную норму взрослого человека.

2. Вещества, оказывающие токсическое действие.

В эту группу входят вещества, присутствие которых в питьевой воде недопустимо или крайне не желательно. Подавляющее большинство их попадает в воду с различными бытовыми или промышленными стоками.

В настоящее время во внешнюю среду выбрасывается множество различных химических соединений, значительная часть которых рано или поздно попадает в водоисточники. Особенно опасным является присутствие в воде плохо поддающихся разрушению или неразрушающихся веществ, обладающих токсическими свойствами .К их числу относятся многие металлы и металлоиды (свинец, ртуть, мышьяк, фтор, бор, бериллий, кадмий, хром, никель, ванадий, селен и др.), некоторые органические и неорганические соединения
(пестициды, смолы, детергенты, фенолы и их производные, производные анилина, цианиды и т.п.), радиоактивные вещества и т.д. В этом обзоре невозможно подробно рассказать про все возможные вещества, способные навредить нашему здоровью и, в конечном счете, сократить жизнь. Остановимся лишь на некоторых из них.

Свинец. Содержание этого металла в природных водах очень невелико, примерно 0,005 мг/л. С промышленными сточными водами могут поступать значительные количества свинца в виде хорошо растворимых солей азотной, хлористо-водородной и серной кислот, а также окиси свинца - РЬО.

Свинец относится к высокотоксичным ядам, способным накапливаться в организме в течение длительного периода времени (кумулятивные свойства). Он поражает центральную нервную систему, систему кроветворения, желудочно-кишечный тракт, ферментные системы и гормоны.

Ртуть. В чистых натуральных природных водах ртуть и ее соединения не встречаются. Однако вследствие широкого применения соединений ртути в промышленности и в сельском хозяйстве это вещество нередко обнаруживается, особенно в открытых водоемах. Токсичность ее исключительно велика. Как и свинец, она способна к кумуляции (накоплению в организме) и обладает способностью поражать центральную нервную систему, почки, печень и кроветворные органы.

Хром. Концентрация этого вещества в природных водах невелика - от 0,0009 до 0,002 мг/л. Увеличение количества хрома чаще всего связано с загрязнением сточными водами металлургических, кожевенных, текстильных, бумажных и других предприятий. Соединения шестивалентного хрома обладают выраженным токсическим свойством. Двух- и трехвалентные соединения несколько менее токсичны.

Фенолы. В природных водах фенолы, как правило, не встречаются, поэтому обнаружение их в воде свидетельствует о попадании в нее промышленных стоков. Хотя токсичность фенолов не очень велика, они способны даже при небольшой концентрации резко ухудшать органолептические свойства воды. При хлорировании воды из фенолов образуются хлорфенолы, которые обладают более сильным неприятным запахом, который начинает ощущаться уже при наличии тысячных долей миллиграмма этого соединения в литре. Кроме того, хлорфенолы обладают большими токсическимии тератогенными свойствами.

Нефть и нефтепродукты. Попадают в водоемы со стоками нефтеперерабатывающих заводов, а также со всех видов транспорта, работающего на нефтепродуктах или перевозящего нефть. Токсичность нефти и нефтепродуктов при поступлении через рот невелика, но установлено, что нефтепродукты содержат канцерогенные вещества, которые оказывают отсроченное действие, накапливаясь в организме.

Нитраты (ионы азотной кислоты) Современные исследования выявили, что нитраты, поступающие в организм с питьевой водой, способны вступать в химическую реакцию с гемоглобином крови с образованием метгемоглобина, который не способен переносить кислород. Особенно опасны нитраты для детей младшего возраста, активный рост которых

требует достаточного снабжения тканей организма кислородом. Основными симптомами отравления являются одышка, изменение цвета кожных покровов (цианоз), отставание развития и роста ребенка. Но и взрослые отнюдь не находятся в безопасности, хотя симптомы могут быть менее выраженными. Существует так называемая бессимптомная и стертая формы метгемоглобинемии (повышенное содержание метгемоглобина в крови). Единственными признаками этих форм могут быть слабость, недомогание, бледность кожных покровов.

Радиоактивные вещества. Все природные воды содержат в небольшом количестве радиоактивные вещества, из которых основными являются радий, уран, торий и калий-40, но их суммарная естественная радиоактивность очень мала. Однако в последнее время наблюдается все больше зон, имеющих повышенную радиоактивность, вызванную антропогенными факторами. При этом основными носителями этой радиоактивности выступают изотопы с небольшим периодом полураспада. Это Стронций-90, Цезий-137, Церий-144, Хлор-36. В окружающую природу они поступают в основном в процессе производства и испытания ядерного оружия, из атомных электростанций, при авариях, при производстве и испытании приборов, содержащих радиоактивные изотопы, а также в случаях неправильной их утилизации.

Наиболее опасной особенностью радиоактивных изотопов является то, что они по химическим и физическим свойствам не отличаются от своих безопасных собратьев. Это позволяет им встраиваться в биологические цепочки, накапливаться в организме, исподволь разрушая его.

Наверное, одним из наиболее опасных изотопов является стронций-90 (Sr-90), имеющий химическое сродство с кальцием, а значит и способность откладываться в костных тканях животных и человека.

Отдельно хотелось бы выделить такой радиоактивный изотоп как Радон-222. Это радиоактивный природный газ, абсолютно прозрачный, не имеющий ни запаха, ни вкуса. При этом именно он является источником примерно 30% от всей радиации, получаемой человеком при жизни. Наличие этого газа не определяется обычными методами, и для определения его концентрации необходимо использовать специальное оборудование.

Радон образуется в недрах Земли в результате распада урана, который в незначительных количествах входит в состав практически всех грунтов и горных пород. Особенно велико содержание урана в гранитных породах. Радон постепенно просачивается из недр на поверхность, где сразу рассеивается в воздухе, в результате чего его концентрация остается ничтожной и не представляет опасности.

Так почему же тогда мы уделяем здесь радону особенное внимание? Оказывается, недостаточный воздухообмен, например, в домах или других помещениях, приводит к накоплению этого газа до опасных концентраций. Так как радон попадает в здания из земли, то на западе при строительстве фундаментов в «радоноопасных» районах широко применяют специальные защитные мембраны, препятствующие просачиванию радона. Но этот опасный газ может проникать в наши дома и другим путем, при том наверное даже более опасным. Этим путем является скваженная вода. При всей привлекательности использования скваженной воды для водоснабжения домов (а иногда скваженная вода используется и в муниципальных системах), она таит в себе эту скрытую опасность. Радон очень хорошо растворим в воде и при контакте подземных вод с радоном, они быстро насыщаются им. Затем, поступая в дома, этот газ также легко покидает воду и насыщает воздух на кухнях и в ванных комнатах. К примеру, при приеме душа (т.е. когда из-за разбрызгивания воды идет активный газообмен с воздухом) концентрация радона может увеличиваться в десятки и даже сотни раз.


XIV ПРОМЫШЛЕННАЯ ОЧИСТКА ВОДЫ


Сколько труда надо затратить для очистки воды, чтобы можно было открыть водопроводный кран и без риска для здоровья просто выпить стакан воды?

Очистка речной воды включает несколько стадий:
  • удаление грубодисперсных веществ (отстаивание, фильтрация); коагулирование – укрупнение частиц с целью ускорить их осаждение (удаление мелкодисперсной взвеси);
  • обеззараживание с целью удалить патогенные микроорганизмы (хлорирование, озонирование, применение ионов серебра); стабилизация воды (удаление веществ, вызывающих коррозию металла и бетона);
  • дегазация (удаление углекислого газа, кислорода, сероводорода); дезодорация (удаление запахов);
  • умягчение и обессоливание; перевод временной жесткости в постоянную;
  • опреснение (дистилляция, вымораживание, ионнообменный метод);
  • корректирование содержания железа, марганца, кремниевой кислоты;
  • очистка от радиоактивных веществ.

Такую очистку проходит вода, которую используют для хозяйственных нужд и питья. Для промышленных целей необязательна такая степень очистки. Однако очень важно, чтобы сточные воды любого предприятия не наносили вреда окружающей среде.

Наиболее эффективный путь защиты водоемов от загрязнения – безотходное производство, когда отходы одной ступени производства используются как сырье для другой. Однако пока не существует универсальной бессточной системы, пригодной для различных отраслей народного хозяйства.
Наибольшее распространение получила очистка сточных вод, из которых, используя современные методы, можно удалить различные примеси на 95–96%. Часто этого недостаточно, но для дальнейшей очистки воды необходимо строить дорогие очистные сооружения, что экономически невыгодно. Сточные воды многих предприятий сложно, дорого, а иногда невозможно очистить до такой степени, чтобы они стали безвредными для растений, животных и человека, поэтому их очищают частично и используют в замкнутых оборотных системах, как показано на схеме (рис. 3).


Рис. 3
Оборотное водоснабжение с
повторным использованием
очищенных сточных вод:
1 – дозатор;
2 – фильтровальная и насосная станции;
3 – градирни для охлаждения оборотной
воды атмосферным воздухом;
4 – станция очистки сточных вод;
5 – станция биохимической очистки;
6 – отстойники