Краткий лекционный курс

Вид материалаДокументы

Содержание


«Пирамида» основных взаимодействий во Вселенной.
Идея эволюции живой природы
Теории возникновения жизни
Самопроизвольное зарождение
Теория панспермии
Теория биохимической эволюции
Гипотеза Опарина-Холдейна
Гиперциклы и зарождение жизни
Химическая эволюция Земли.
Специфика и системность живого
Развитие жизни на земле
Законы наследственности
Ген – единица наследственного материала, ответственная за формирование какого-либо элементарного признака организма. Совокупност
Подобный материал:
1   2   3   4   5   6   7

«Пирамида» основных взаимодействий во Вселенной.




Изменение числа нейтронов в ядре приводит к появлению изотопов – химических элементов, обладающих тождественными свойствами, но разными массами. Атомы, в которых ядра нестабильны, например, уран с массой 238 и многие изотопы, радиоактивны. Стабильность ядер может быть нарушена искусственно путем передачи ядру дополнительной энергии, тогда начинаются ядерные реакции. Для тяжелых элементов возможен процесс деления ядер, для легких – процесс синтеза.

Поля, существующие в атоме и, следовательно, взаимодействия между субатомными частицами подразделяются на три типа:

– гравитационные (перенос взаимодействия осуществляется не обнаруженными частицами гравитонами);

– электромагнитные и слабые – электрослабые (перенос взаимодействия осуществляется частицами – фотонами и т.н. промежуточными бозонами, соответственно);

– сильные (перенос взаимодействия осуществляется частицами глюонами);

Первый вид взаимодействия наблюдается в мегамире, первый и второй – в макромире. Все три вида взаимодействий наблюдаются в микромире. Электромагнитные взаимодействия, объединенные в современной теории со слабыми (авторы этой теории – Шелдон Ли Глешоу, Абдус Салам, Стивен Вайнберг – лауреаты Нобелевской премии по физике (1979 г.)), происходят между заряженными частицами, они ответственны за все химические реакции, за образование атомных и молекулярных структур.

Слабые взаимодействия заменяют электромагнитные на очень малых расстояниях между любыми частицами, кроме фотонов, и проявляются в процессах распада и взаимопревращений частиц. Сильные взаимодействия удерживают вместе протоны и нейтроны внутри ядер, они являются проявлением ядерной энергии (самой большой и опасной энергии на Земле). Сильные взаимодействия характерны для всех адронов. Они проявляются при возникновении ядерных реакций, например, при делении и синтезе ядер. При делении возможно освобождение энергии порядка 1 МэВ/нуклон, т.е. деление 1 г урана энергетически эквивалентно сгоранию 2,5 т нефти. При синтезе освобождается до 6 МэВ/нуклон. Это объясняет научный интерес к реализации управляемой термоядерной реакции. Еще больший интерес вызывают возможности управляемой аннигиляции вещества и антивещества – при такой аннигиляции выделяется энергия покоя частиц, для нуклона она составляет более 1800 МэВ.


ИДЕЯ ЭВОЛЮЦИИ ЖИВОЙ ПРИРОДЫ


    Идея эволюции живой природы возникла в Новое время как противопоставление креационизму (от лат. "созидание") - учению о сотворении мира богом из ничего и неизменности созданного творцом мира. Креацианизм как мировоззрение сложился в эпоху поздней античности и в Средневековье и занял господствующие позиции в культуре.
    Фундаментальную роль в мировоззрении того времени играли также идеи телеологии - учения, по которому все в природе устроено целесообразно и всякое развитие является осуществлением заранее предопределенных целей. Телеология приписывает процессам и явлениям природы цели, которые или устанавливаются богом (Х.Вольф), или являются внутренними причинами природы (Аристотель, Лейбниц).
    В преодолении идей креацианизма и телеологии важную роль сыграла концепция ограниченной изменчивости видов в пределах относительно узких подразделений (от одного единого предка) под влиянием среды - трансформизм. Эту концепцию в развернутой форме сформулировал выдающийся естествоиспытатель 18 века Жорж Бюффон в своем 36-томном труде "Естественная история".
    Трансформизм в основе своей имеет представления об изменении и превращении органических форм, происхождении одних организмов от других. Среди естествоиспытателей и философов-трансформистов 17 и 18 веков наиболее известны также Р.Гук, Ж.Ламетри, Д.Дидро, Э.Дарвин,И.Гете,Э.Сент-Илер. Все трансформисты признавали изменяемость видов организмов под действием изменений окружающей среды.
    В становлении идеи эволюции органического мира существенную роль сыграла систематика - биологическая наука о разнообразии всех существующих и вымерших организмов, о взаимоотношениях и родственных связях между их различными группами (таксонами). Основными задачами систематики являются определение путем сравнения специфических особенностей каждого вида и каждого таксона более высокого ранга, выяснение общих свойств у тех или иных таксонов. Основы систематики заложены в трудах Дж. Рея (1693) и К. Линнея (1735).
    Шведский естествоиспытатель 18 века Карл Линней впервые последовательно применил бинарную номенклатуру и построил наиболее удачную искусственную классификацию растений и животных.
    В 1751 году вышла его книга "Философия ботаники", в которой К.Линней писал: " Искусственная система служит только до тех пор, пока не найдена естественная. Первая учит только распознавать растения. Вторая научит нас познавать природу самого растения". И далее: "Естественный метод есть последняя цель ботаники".
    То, что Линней называет "естественным методом", есть по сути некоторая фундаментальная теория живого. Заслуга Линнея в том, что через создание искусственной системы он подвел биологию к необходимости рассмотрения колоссального эмпирического материала с позиций общих теоретических принципов.
    Большую роль в становлении и развитии идеи эволюции живой природы сыграла эмбриология, для которой в Новое время было характерно противостояние преформизма и эпигенеза.
    Преформизм - от лат. "предобразую" - учение о наличии в половых клетках материальных структур, предопределяющих развитие зародыша и признаки развивающегося из него организма.
    Преформизм возник на базе господствовавшего в 17-18 веках представления о преформации, согласно которому сформировавшийся организм якобы предобразован в яйце (овисты) или сперматозоиде (анималькулисты). Преформисты (Ш.Бонне, А. Галлер и др) считали, что проблема эмбрионального развития должна получить свое разрешение с позиций всеобщих принципов бытия, постигаемых исключительно разумом, без эмпирических исследований.
    Эпигенез - это учение, согласно которому в процессе зародышевого развития происходит постепенное и последовательное новообразование органов и частей зародыша из бесструктурной субстанции оплодотворенного яйца.
    Эпигенез как учение сложился в 17-18 веках в борьбе с преформизмом. Эпигенетические представления развивали У.Гарвей, Ж.Бюффон, К.Ф.Вольф. Эпигенетики отказались от идеи божественного творения живого и подошли к научной постановке проблемы происхождения жизни.
    Таким образом, в 17-18 веках возникала идея исторических изменений наследственных признаков организмов, необратимого исторического развития живой природы - идея эволюции органического мира.
    Эволюция - от лат. "развертывание" - историческое развитие природы. В ходе эволюции, во-первых, возникают новые виды, т.е. увеличивается разнообразие форм организмов. Во-вторых, организмы адаптируются, т.е. приспосабливаются к изменениям условий внешней среды. В-третьих, в результате эволюции постепенно повышается общий уровень организации живых существ: они усложняются и совершенствуются.
    Переход от представления о трансформации видов к идее эволюции, исторического развития видов предполагал, во-первых, рассмотрение процесса образования видов в его истории, учет конструктивной роли фактора времени в историческом развитии организмов, а во-вторых, развитие идей о возникновении качественно нового в таком историческом процессе. Переход от трансформизма к эволюционизму в биологии произошел на рубеже 18-19 веков.
    Первые эволюционные теории были созданы двумя великими учеными 19 века - Ж.Ламарком и Ч.Дарвином.
    Жан Батист Ламарк и Чарльз Роберт Дарвин создали эволюционные теории, которые противоположны по строю,характеру аргументации, основным выводам. Их исторические судьбы также сложились по-разному. Теория Ламарка не получила широкого признания современников, в то время как теория Дарвина стала основой эволюционного учения. В настоящее время и дарвинизм, и ламаркизм продолжают оказывать влияние на научные концепции, хотя и по-разному.
    В 1809 году вышла книга Ламарка "Философия зоологии", в которой была изложена первая целостная теория эволюции органического мира.
    Ламарк в этой книге дал ответы на вопросы, стоящие перед эволюционной теорией, путем логических выводов из некоторых принятых им постулатов. Он впервые выделил два самых общих направления эволюции: восходящее развитие от простейших форм жизни ко все более сложным и совершенным и формирование у организмов приспособлений в зависимости от изменений внешней среды (развитие "по вертикали" и "по горизонтали"). Ламарк был одним из первых естествоиспытателей, которые развили идею эволюции органического мира до уровня теории.
    Ламарк включил в свое учение качественно новое понимание роли среды в развитии органических форм, трактуя внешнюю среду как важный фактор, условие эволюции.
    Ламарк полагал, что историческое развитие организмов имеет не случайный, а закономерный характер и происходит в направлении постепенного и неуклонного совершенствования. Ламарк назвал это повышение общего уровня организации градацией.
    Движущей силой градаций Ламарк считал "стремление природы к прогрессу", "стремление к совершенствованию", изначально прсущее всем организмам и заложенное в них Творцом. При этом организмы способны целесообразно реагировать на любые изменения внешних условий, приспосабливаться к условиям внешней среды. Это положение Ламарк конкретизировал в двух законах:
    1) активно используемый орган усиленно развивается, а ненужный исчезает;
    2) изменения, приобретенные организмами при активном использовании одних органов и неиспользовании других, сохраняются у потомства.
    Роль среды в эволюции организмов по-разному рассматривается разными направлениями эволюционного учения.
    Для направлений в эволюционном учении, которые рассматривают историческое развитие живой природы как прямое приспособление организмов к среде обитания, используется общее название - эктогенез (от греч. слов "вне, снаружи" и "возникновение, образование"). Сторонники эктогенеза рассматривают эволюцию как процесс прямого приспособления организмов к среде и простого суммирования изменений, приобретаемых организмами под воздействием среды.
    Учения, обясняющие эволюцию организмов действием только внутренних нематериальных факторов ("принципом совершенствования", "силой роста" и др.), объединяются общим названием - автогенез.
    Эти учения рассматривают эволюцию живой природы как процесс, независимый от внешних условий, направляемый и регулируемый внутренними факторами. Автогенез противоположен эктогенезу.
    Автогенез близок витализму - совокупности течений в биологии, согласно которым жизненные явления объясняются присутствием в организмах нематериальной сверхъестественной силы ("жизненная сила", "душа", "энтелехия", "архей"), управляющей этими явлениями. Витализм- от лат. "жизненный" - объясняет жизненные явления действием особого нематериального начала.
    По-своему идея эволюции органического мира развивалась в теории катастроф.
    Французский биолог Жорж Кювье (1769-1832) писал:
    "Жизнь не раз потрясала на нашей земле страшными событиями. Бесчисленные живые существа становились жертвой катастроф: одни, обитатели суши, были поглощаемы потопами, другие, населявшие недра вод, оказывались на суше вместе с внезапно приподнятым дном моря, сами их расы навеки исчезали, оставив на свете лишь немногие остатки, едва различимые для натуралистов".
    Развивая такие взгляды, Кювье стал основателем теории катастроф - концепции, в которой идея биологической эволюции выступила как производная от более общей идеи развития глобальных геологических процессов.
    Теория катастроф (катастрофизм) исходит из представлений о единстве геологических и биологических аспектов эволюции.
    В теории катастроф прогресс органических форм оъясняется через признание неизменяемости отдельных биологических видов.
    Против учения катастрофизма выступили сторонники другой концепции эволюции, которые также ориентировались преимущественно на геологическую проблематику, но исходили из представлений о тождественности современных и древних геологических процессов - концепции униформизма.
    Униформизм складывался под влиянием успехов классической механики, прежде всего небесной механики, галактической астрономии, представлений о бесконечности и безграничности природы в пространстве и времени. В 18-первой половине 19 века концепцию униформизма разработали Дж. Геттон, Ч. Лайель, М.В.Ломоносов, К.Гофф и др. Эта концепция опирается на представления об однообразии и непрерывности законов природы, их неизменности на протяжении истории Земли; отсутствии всяческих переворотов и скачков в истории Земли; суммировании мелких отклонений в течение больших периодов времени; потенциальной обратимости явлений и отрицании прогресса в развитии.

Современная биология по праву претендует на лидерство в естествознании. Основываясь на физических и химических концепциях, молекулярная биология становится все более значима для общества. Дело в том, что понимание феномена жизни как одной из форм существования материи, отличается от других процессами обмена веществ, способностью к размножению, росту и развитию, активной регуляции своего состава и функций, к различным формам движения, приспособляемостью к среде, является одной из важнейших проблем человечества.


Теории возникновения жизни

Наиболее известными к настоящему времени теориями возникновения жизни на Земле являются следующие.

Креационизм. Согласно этой теории жизнь была создана сверхъестественным существом – Богом в определенное время. Этого взгляда придерживаются последователи почти всех религиозных учений. Однако и среди них нет единой точки зрения по этому вопросу, в частности, по трактовке традиционного христианско-иудейского представления о сотворении мира (Книга Бытия). Одни буквально понимают Библию и считают, что мир и все населяющие его живые организмы были созданы за шесть дней продолжительностью по 24 часа (в 1650 г. архиепископ Ашер, сложив возраст всех людей, упоминающихся в библейской генеалогии, вычислил, что Бог приступил к сотворению мира в октябре 4004 г. до н.э.  и закончил свой труд в декабре 23 октября в 9 часов утра, создав человека. При этом, правда, получается, что Адам был сотворен в то время, когда на Ближнем Востоке уже существовала хорошо развитая городская цивилизация). Другие же не относятся к Библии как к научной книге и считают, что главное в ней – божественное  откровение о создании мира всемогущим Творцом в понятной для людей древнего мира форме. Другими словами, Библия не отвечает на вопросы «каким образом?» и «когда?», а отвечает на вопрос «почему?». В широком смысле креационизм допускает, таким образом, как создание мира в его законченном виде, так и создание мира, эволюционирующего по законам, заданным Творцом.

Процесс божественного сотворения мира мыслится как имевший место лишь единожды и поэтому недоступный для наблюдения. Однако для верующего теологическая (божественная) истина абсолютна и не требует доказательств. В то же время, для настоящего ученого научная истина не является абсолютной, она всегда содержит элемент гипотезы. Таким образом, концепция креационизма автоматически выносится за рамки научного – исследования, поскольку наука занимается лишь теми явлениями, которые поддаются наблюдению, могут быть подтверждены или отвергнуты в ходе исследований (принцип фальсифицируемости научных теорий). Другими словами, наука никогда сможет ни доказать, ни опровергнуть креационизм.

Самопроизвольное зарождение. Согласно этой теории жизнь возникала и возникает неоднократно из неживого вещества. Эта теория была распространена в Древнем Китае, Вавилоне, Египте. Аристотель, которого часто называют основателем биологии, развивая более ранние высказывания Эмпедокла об эволюции живого, придерживался теории самопроизвольного зарождения жизни. Он считал, что «..живое может возникать не только путем спаривания животных, но и разложением почвы.». С распространением христианства эта теория оказалась в одной проклятой церковью «обойме» с оккультизмом, магией, астрологией, хотя и продолжала существовать где-то на заднем плане, пока не была опровергнута экспериментально в 1688 г. итальянским биологом и врачом Франческо Реди. Принцип «Живое возникает только из живого» получил в науке название Принципа Реди. Так складывалась концепция биогенеза, согласно которой жизнь может возникнуть только из предшествующей жизни. В середине 19-го века Л. Пастер окончательно опроверг теорию самопроизвольного зарождения и доказал справедливость теории биогенеза.

Теория панспермии. Согласно этой теории жизнь была занесена на Землю извне, поэтому ее, в сущности, нельзя считать теорией возникновения жизни как таковой. Она не предлагает никакого механизма для объяснения первичного возникновения жизни, а просто переносит проблему происхождения жизни в какое-то другое место Вселенной.

Теория биохимической эволюции. Жизнь возникла в специфических условиях древней Земли в результате процессов, подчиняющимся физическим и химическим законам. Последняя теория отражает современные естественнонаучные взгляды и поэтому будет рассмотрена подробнее.

Согласно данным современной науки возраст Земли составляет примерно 4,5 – 5 млрд. лет. В далеком прошлом условия на Земле коренным образом отличались от современных, что обусловило определенное течение химической эволюции, которая явилась предпосылкой для возникновения жизни. Другими словами, собственно биологической эволюции предшествовала предбиотическая эволюция, связанная с переходом от неорганической материи к органической, а затем к элементарным формам жизни. Это было возможным в определенных условиях, которые имели место на Земле в то время, а именно:

· высокая температура, порядка 4000ОС,
· атмосфера, состоящая из водяных паров, СО2, СН3, NH3,
· присутствие сернистых соединений (вулканическая активность),
· высокая электрическая активность атмосферы,
· ультрафиолетовое излучение Солнца, которое беспрепятственно достигало нижних слоев атмосферы и поверхности Земли, поскольку озоновый слой еще не сформировался.

Следует подчеркнуть одно из важнейших отличий теории биохимической эволюции от теории самопроизвольного (спонтанного) зарождения,  а именно: согласно этой теории жизнь возникла в условиях, которые для современной биоты непригодны !

Гипотеза Опарина-Холдейна. В 1923 г. появилась знаменитая гипотеза Опарина, сводившаяся к следующему: первые сложные углеводороды могли возникать в океане из более простых соединений, постепенно накапливаться и проводить к возникновению «первичного бульона». Эта гипотеза быстро приобрела вес теории. Надо сказать, что последующие экспериментальные исследования свидетельствовали о правомерности таких предположений. Так в 1953 г. С. Миллер, смоделировав предполагаемые условия древней Земли (высокая температура, ультрафиолетовая радиация, электрические разряды) синтезировал в лабораторных условиях 15 аминокислот, входящих в состав живого, некоторые простые сахара (рибоза). Позднее были синтезированы простые нуклеиновые кислоты (Орджел). В настоящее время синтезированы все 20 аминокислот, составляющих основу жизни.

Опарин предполагал, что решающая роль в превращении неживого в живое принадлежит белкам. Белки способны образовывать гидрофильные комплексы: молекулы воды образуют вокруг них оболочку. Эти комплексы могут обособляться от водной фазы и образовывать так называемые коацерваты (<лат. сгусток, куча) с липидной оболочкой, из которой затем могли образоваться примитивные клетки. Существенный недостаток этой гипотезы – она не опирается на современную молекулярную биологию. Это вполне объяснимо, поскольку механизм передачи наследственных признаков и роль ДНК стали известны сравнительно недавно.

(Английский ученый Холдейн (Кембриджский университет) в 1929 г. опубликовал свою гипотезу, согласно которой,  живое также появилось на Земле в результате химических процессов в богатой диоксидом углерода атмосфере Земли,  и первые живые существа были, возможно, «огромными молекулами». Он не упоминал ни о гидрофильных комплексах, ни о коацерватах, но его имя часто упоминается рядом с именем Опарина, а гипотеза получила название гипотезы Опарина-Холдейна.)

 Решающую роль в возникновении жизни впоследствии отводили появлению механизма репликации молекулы ДНК. Действительно, любая сколь угодно сложная комбинация аминокислот и других сложных органических соединений – это еще не жизнь. Ведь важнейшее свойство жизни – ее способность к самовоспроизведению. Проблема здесь в том, что сама по себе ДНК «беспомощна», она может функционировать только при наличии белков-ферментов (например, молекула ДНК-полимеразы, «расплетающая» молекулу ДНК, подготавливая ее к репликации). Остается открытым вопрос, как самопроизвольно могли возникнуть такие сложнейшие «машины» как пра-ДНК и нужный для ее функционирования сложный комплекс белков-ферментов.

В последнее время   разрабатывается идея возникновения жизни на основе РНК, т.е. первыми организмами могли быть РНК, которые, как показывают опыты, могут эволюционировать даже в пробирке. Условия для эволюции таких организмов наблюдаются при кристаллизации глины. Эти предположения основаны, в частности,   на  том, что при кристаллизации глин каждый новый слой кристаллов выстраивается в соответствии с особенностями предыдущего, как бы получая от него информацию о строении. Это напоминает механизм репликации РНК и ДНК. Таким образом, получается, что химическая эволюция началась с неорганических соединений, и первые биополимеры могли быть результатом автокаталитических реакций малых молекул алюмосиликатов глины.

Гиперциклы и зарождение жизни. Концепция самоорганизации может способствовать лучшему пониманию процессов происхождения и эволюции жизни, исходя из теории химической эволюции Руденко, рассмотренной ранее и гипотезы немецкого физико-химика М. Эйгена. Согласно последней, процесс возникновения живых клеток тесно связан с взаимодействием нуклеотидов (нуклеотиды - элементы нуклеиновых кислот – цитозин, гуанин, тимин, аденин), являющихся материальными носителями информации, и протеинов (полипептидов [1]), служащих катализаторами химических реакций. В процессе взаимодействия нуклеотиды под влиянием протеинов воспроизводят самих себя и передают информацию следующему за ними протеину, так что возникает замкнутая автокаталитическая цепь, которую М. Эйген назвал гиперциклом. В ходе дальнейшей эволюции из них возникают первые живые клетки, сначала безъядерные (прокариоты), а затем с ядрами – эукариоты.

Здесь, как видим, прослеживается логическая связь между теорией эволюции катализаторов и представлениями о замкнутой автокаталитической цепи. В ходе эволюции принцип автокатализа дополняется принципом самовоспроизведения целого циклически организованного процесса в гиперциклах, предложенного М.Эйгеном.  Воспроизведение компонентов гиперциклов, так же как и их объединение в новые гиперциклы, сопровождается усилением метаболизма, связанного с синтезированием высокоэнергетических молекул и выведением как «отбросов» бедных энергией молекул. (Здесь интересно отметить особенности вирусов как промежуточной формы между жизнью и нежизнью: они лишены способности к метаболизму и, внедряясь в клетки, начинают пользоваться их метаболической системой). Итак, по Эйгену происходит конкуренция гиперциклов, или циклов химических реакций, которые приводят к образованию белковых молекул. Циклы, которые работают быстрее и эффективнее, чем остальные, «побеждают» в конкурентной борьбе. Таким образом, концепция самоорганизации позволяет установить связь между живым и неживым в ходе эволюции, так что возникновение жизни представляется отнюдь не чисто случайной и крайне маловероятной комбинацией условий и предпосылок для ее появления. Кроме того, жизнь сама готовит условия для своей дальнейшей эволюции.


Химическая эволюция Земли.

В процессе эволюции Земли складывались определенные пропорции различных элементов. В веществе планет, комет, метеоритов, Солнца присутствуют все элементы периодической системы, что доказывает общность их происхождения, однако количественные соотношения различны. Количество атомов какого-либо химического элемента в различных природных системах принято выражать по отношению к кремнию , поскольку кремний принадлежит к обильным и труднолетучим соединениям.

С ростом порядкового номера распространенность элементов убывает, но не равномерно. Примечательно, что элементы с четным порядковым номером, особенно элементы с массовым числом кратным 4 более распространены. К ним, в частности, относятся He, CO, Ne, Mg, Si, S, Ar, Ca. Дело в том, что этим массовым числам соответствуют устойчивые ядра. Американские космохимики Г. Юри и Г. Зюсс писали по этому поводу следующее: “...распространенность химических элементов и их изотопов определяется ядерными свойствами, и окружающее нас вещество похоже на золу космического ядерного пожара, из которого оно было создано”.

К важнейшим свойствам Земли, определяющим ее происхождение и химическую эволюцию, относится радиоактивность. Все первичные планеты были сильно радиоактивны. Нагреваясь за счет энергии радиоактивного распада, они подвергались химической дифференциации, которая завершилась формированием внутренних металлических ядер у планет земной группы.

Литофильные элементы, т.е. элементы, образующие твердые оболочки планет (Si, O, Al, Fe, Ca, Mg, Na, K) переходили вверх, выделение газов из расплавленного вещества мантий при выплавлении легкоплавких фракций, приводила к базальтовым расплавам, которые также изливались на поверхность планет. Газовые компоненты, вырывающиеся вместе с ними, дали начало первичным атмосферам, которые смогли удержать только сравнительно крупные планеты, к которым относилась и Земля. Схема формирования структуры Земли показана на рис.1, ядро имеет радиус около 1500 км, окружено мантией с земной корой с радиусом 6000 км. В составе Земли преобладают:железо(34%), кислород(29%), кремний (15% ), магний(12%). Материковая часть коры- 29%.океаническая- 71%.



Земля наиболее массивная среди внутренних планет, прошла сложнейший путь химической эволюции. Его были усвоены и сложные органические соединения, обнаруженные также и в метеоритном веществе. Эти вещества образовались еще на последних стадиях остывания протопланетного облака. Впоследствии на Земле они привели к возникновению жизни.

Геохронология. Русский геохимик А.Е. Ферсман (1883-1945) разделил время существования атомов Земли на три эпохи:

- эпоху звездных условий существования,
- эпоху начала формирования планет,
- эпоху геологического развития.

Для обозначения времен и последовательности образования горных пород Земли в эпоху ее геологического развития примет термин геохронология.

По степени изученности геологической и биологической истории Земли, все время ее существования делится на две неравные части:

1. Криптозой (criptos – тайный), эта часть охватывает огромный интервал времени (от 570 до 3800 млн. лет назад). Это период со скрытым развитием органической жизни, включающая архейскую и протерозойскую эры.

2. Фанерозой (греч. рhaneros “явный” + zoe “жизнь”), более поздняя составляющая 570 млн. лет и включающая палеозойскую, мезозойскую и кайнозойскую эры;

Поворотной точкой в истории биологической эволюции Земли явился кембрийский период палеозойской эры. Если докембрийская эпоха была временем единоличного господства одноклеточных организмов, то после-кембрийская стала эпохой многоклеточных форм. В кембрийский период впервые в истории эволюции возникли многоклеточные организмы современного типа, сложились все основные характеристики тех телесных "планов", по которым эти организмы строятся до сих пор.

.До сих пор представляется загадочным тот факт, что появление новых форм не растянулось на всю кембрийскую эпоху или хотя бы значительную ее часть, а произошло почти одновременно, в течение каких-нибудь трех-пяти миллионов лет. В геологических масштабах времени это совершенно ничтожный срок - он составляет всего одну тысячную от общей длительности эволюци. Этот эволюционный скачок получил название "Кембрийский взрыв ".


Специфика и системность живого

Вопрос о сущности жизни до сих пор является одним из центральных вопросов естествознания, несмотря на то, что дискуссии о том, что такое жизнь отражаются различные точки зрения. Под биологической (живой) системой понимается совокупность взаимодействующих элементов, которая образует целостный объект, имеющие новые качества, не свойственные входящим в систему качеств элементов.

Таким образом, живой, целостной системе присущи следующие качества:

· множественность элементов,
· наличие связей между элементами и с окружающей средой,
· согласованная организация взаимоотношений элементов как в пространстве, так и во времени, направленное на осуществление функций системы.

Определение жизни. Жизнь – это высшая из природных форм движения материи, она характеризуется самообновлением, саморегуляцией и самовоспроизведением разноуровневых открытых систем, вещественную основу которых составляют белки, нуклеиновые кислоты и фосфорорганические соединения. (В настоящее время описано более 1 млн. видов животных, около 0,5 млн. растений, сотни тысяч видов грибов, более 3 тыс видов бактерий. Причем число неописанных видов около 1 млн.


РАЗВИТИЕ ЖИЗНИ НА ЗЕМЛЕ
    Геологическая эра Земли от ее образования до зарождения жизни называется катархей.
    Катархей (от греч. "ниже древнейшего") - эра, когда была безжизненная Земля, окутанная ядовитой для живых существ атмосферой, лишенной кислорода; гремели вулканические извержения, сверкали молнии, жесткое ультрафиолетовое излучение пронизывало атмосферу и верхние слои воды. Под влиянием этих явлений из окутавшей Землю смеси паров сероводорода, аммиака, угарного газа начинают синтезироваться первые органические соединения, возникают свойства, характерные для жизни.
    Такая картина эры катархея (около 5 - 3,5 млрд. лет назад) предстает из современных исследований. Но выдвигаются и другие гипотезы. Вернадский, например, считал, что биосфера геологически вечна, т.е. что жизнь на Земле существует столько же времени, сколько и сама Земля как планета.
    Архей - древнейшая геологическая эра Земли (3,5 - 2,6 млрд. лет назад).
    Ко времени архея относится возникновение первых прокариот (бактерий и сине-зеленых) - организмов, которые в отличие от эукариот не обладают оформленным клеточным ядром и типичным хромосомным аппаратом (наследственная информация реализуется и передается через ДНК).
    В отложениях архея найдены также остатки нитчатых водорослей. В этот период появляются гетеротрофные организмы не только в море, но и на суше. Образуется почва. В атмосфере снижается содержание метана, аммиака, водорода, начинается накопление углекислого газа и кислорода.
    Протерозой (с греч. "первичная жизнь) - огромный по продолжительности этап исторического развития Земли (2,6 млрд.-570 млн. лет назад).
    (Учеб.Биол., с.186-187)
    Возникновение многоклеточности - важный ароморфоз в эволюции жизни.
    Конец протерозоя иногда называют "веком медуз" - очень распространенных в это время представителей кишечнополостных.
    Палеозой (от греч. "древняя жизнь") - геологическая эра (570-230 млн. лет) со следующими периодами:

 кембрий (570-500 млн.лет)

 ордовик (500-440 млн. лет)

 силур (440-410 млн. лет)

 девон (410-350 млн. лет)

 карбон (350-285 млн. лет)

 пермь (285-230 млн. лет).




Фауна раннего палеозоя (кембрий, ордовик, силур):
1-колония археоцит
2-скелет силурийского коралла
3-обитатель мелководных заливов силурийских морей-гигантский ракоскорпион
4-головоногий моллюск
5-морские лилии
6, 7, 8-древнейшие позвоночные бесчелюстные панцирные "рыбы"
9-одиночные кораллы
10, 11-трилобиты-примитивнейшие ракообразные
12-раковина силурийского головоногого моллюска


   Наступивший в конце силура горообразовательный период изменил климат и условия существования организмов. В результате поднятия суши и сокращения морей климат девона был более континентальный, чем в силуре. В девоне появились пустынные и полупустынные области; на суше появляются первые леса из гигантских папоротников, хвощей и плаунов. Новые группы животных начинают завоевывать сушу, но их отрыв от водной среды не был еще окончательным. К концу карбона относится появление первых пресмыкающихся - полностью наземных представителей позвоночных. Они достигли значительного разнообразия в перми из-за засушливого климата и похолодания.
    Так в палеозое произошло завоевание суши многоклеточными растениями и животными.
    Мезозой (с греч. "средняя жизнь") - это геологическая эра (230-67 млн.лет) со следующими периодами:

 триас (230-195 млн.лет)

 юра (195-137 млн.лет)

 мел (137-67 млн.лет).
    Мезозой справедливо называют эрой пресмыкающихся. Их расцвет, широчайшая дивергенция и вымирание происходят именно в эту эру.
    В мезозое усиливается засушливость климата. Вымирает множество сухопутных организмов, у которых отдельные этапы жизни связаны с водой: большинство земноводных, папоротники, хвощи и плауны. Вместо них начинают преобладать наземные формы, в жизненном цикле которых нет стадий, связанных с водой. В триасе среди растений сильного развития достигают голосеменные, среди животных - пресмыкающиеся. В триасе появляются растительноядные и хищные динозавры. Весьма разнообразны в эту эру морские пресмыкающиеся. Помимо ихтиозавров, в морях юры появляются плезиозавры.



    Для развития жизни в раннем палеозое (кембрий, ордовик, силур) характерно интенсивное развитие наземных растений и выход на сушу животных

Мезозойские пресмыкающиеся:
1-водяной ящер
2-полуводный ящер
3-рогатый динозавр
4-летающий хвостатый ящер
5-летающий бесхвостый ящер
6-растительноядный динозавр-бронтозавр
7-растительноядный динозавр-стегозавр


В юре от пресмыкающихся возникли и птицы. На суше в юре встречаются гигантские растительноядные динозавры.
    Во второй половине мела возникли сумчатые и плацентарные млекопитающие. Приобретение живорождения, теплокровности были теми ароморфозами, которые обеспечили прогресс млекопитающих.
    Геологическая эра, в которую мы живем, называется кайнозой.
    Кайнозой (от греч. "новая жизнь") - это эра (67 млн. лет - наше время) расцвета цветковых растений, насекомых, птиц и млекопитающих.
    Кайнозой делится на два неравных периода: третичный (67-3 млн.лет) и четвертичный (3 млн.лет - наше время).
    В первой половине третичного периода широко распространены леса тропического и субтропического типа. В течение третичного периода от насекомоядных млекопитающих обособляется отряд приматов. К середине этого периода широкое распространение получают и общие предковые формы человекообразных обезьян и людей.
    К концу третичного периода встречаются представители всех современных семейств животных и растений и подавляющее большинство родов.




Третичные млекопитающие:
1-фенакодус
2-эогиппус
3-гиппарион
4-палеотранус
5-саблезубый тигр
6-оленеобразный жираф
7-гигантский носорог
8-меритерий
9-миоценовый слон


В это время начинается великий процесс остепнения суши, который привел к вымиранию одних древесных и лесных форм и к выходу других на открытое пространство. В результате сокращения лесных площадей одни из форм антропоидных обезьян отступали вглубь лесов, другие спустились с деревьев на землю и стали завоевывать открытые пространства. Потомками последних являются люди, возникшие в конце третичного периода.
    В течение четвертичного периода вымирают мамонты, саблезубые тигры, гигантские ленивцы, большерогие торфяные олени и другие животные. Большую роль в вымирании крупных млекопитающих сыграли древние охотники



Млекопитающие четвертичного периода:
1-широконосый носорог
2-носорог-эласмотерий
3-гигантский броненосец
4-гигантский ленивец
6-мамонт
7-древний слон
8-древний зубр
9-гигантский торфяной олень
10-современный индийский слон



 Около 10 тысяч лет назад в умеренно теплых областях Земли наступила "неолитическая революция", связанная с переходом человека от собирательства и охоты к земледелию и скотоводству. Это определило видовой состав органического мира, который существует в настоящее время.

Свойства живого

Живые организмы характеризуются сложной, упорядоченной структурой

Живые организмы получают энергию из внешней среды, используя ее на поддержание собственной упорядоченности

Живые организмы не только изменяются, но и усложняются

Живые организмы активно реагируют на внешнюю среду

Живым организмам присуща способность самовоспроизводства на основе генетического кода

Живым организмам присуща способность сохранять и передавать информацию

Живым организмам присуща высокая приспособляемость к внешней среде

Живым организмам присуща молекулярная хиральность (молекулярная диссиметрия)

Целостная система (ткани, органы – элементы, живая система – организм) образуется лишь в результате соединения составных элементов в порядке, который сложился в процессе эволюции. Целостной живой системе присущи следующие качества:

1. Единство химического состава. Хотя в состав живых систем входят те же химические элементы, что и в объекты неживой природы, соотношение различных элементов в живом и неживом неодинаково. В живых организмах ~ 98% химического состава приходится на шесть элементов: кислород (~62%), углерод (~20 %),водород (~10%), азот (~3%), кальций (~2,5%), фосфор (~1,0 %). Кроме того, живые системы содержат совокупность сложных полимеров (в основном белки, нуклеиновые кислоты, ферменты и т.д.), которые неживым системам не присущи.

2. Открытость живых систем. Живые системы – открытые системы. Живые системы используют внешние источники энергии в виде пищи, света и т.п. Через них проходят потоки веществ и энергии, благодаря чему в системах осуществляется обмен веществ - метаболизм. Основа метаболизма – анаболизм (ассимиляция), то есть синтез веществ, и катаболизм (диссимиляция), то есть распад сложных веществ на простые с выделением энергии, которая используется для биосинтеза.

3. Живые системы – самоуправляющиеся, саморегулирующиеся, самоорганизующиеся системы. Для пояснения этого утверждения дадим определения саморегуляции и самоорганизации.

Саморегуляция – свойство живых систем автоматически устанавливать и поддерживать на определенном уровне те или иные физиологические (или другие) показатели системы. Самоорганизация – свойство живой системы приспособляться к изменяющимся условиям за счет изменения структуры своей системы управления. При саморегуляции и самоорганизации управляющие факторы воздействуют на систему не извне, а возникают в ней самой в процессе переработки информации, которой живая система обменивается с внешней средой. Это означает, что живые системы – самоуправляющиеся системы.

4. Живые системы – самовоспроизводящиеся системы. Живые системы существуют конечное время. Поддержание жизни связано с самовоспроизведением, благодаря чему живое существо воспроизводит себе подобных.

5. Изменчивость живых систем. Изменчивость связана с приобретением организмом новых признаков и свойств. Это явление противоположно наследственности и играет роль в процессе отбора организмов, наиболее приспособленных к конкретным условиям.

6. Способность к росту и развитию. Рост - увеличение в размерах и массе с сохранением общих черт строения; рост сопровождается развитием, то есть возникновением новых черт и качеств. Развитие может быть индивидуальным (онтогенез), когда последовательно проявляются все свойства организма, и историческим, которое сопровождается образованием новых видов и прогрессивным усложнением живой системы (филогенез).

7. Раздражимость живых систем. Раздражимость - неотъемлемая черта всего живого. Раздражимость связана с передачей информации из внешней среды к живой системе и проявляется в виде реакций системы на внешние воздействия.

8. Целостность и дискретность. Живая система дискретна, так как состоит из отдельных, но взаимодействующих между собой частей, которые в свою очередь также являются живыми системами. Например: организм состоит из клеток, являющихся живыми системами; биоценоз состоит из совокупностей различных видов, которые также являются живыми системами..

К живому веществу Земли относятся:

 растения (низшие и высшие). Они имеют способность к фотосинтезу, т.е. они синтезируют все необходимые органические вещества из неорганических;

 животные – организмы, имеющие способность к гетеротрофному питанию, т.е. они питаются готовыми органическими соединениями в виде других организмов;

 грибы – организмы, питающиеся растворенными с помощью выделяемых ферментов органическими субстратами, на которых они растут.

Современная концепция возникновения жизни на Земле сегодня состоит в том, что жизнь является результатом закономерной эволюции материи. На рис. 11 изображена схема подобной эволюции.

ЗАКОНЫ НАСЛЕДСТВЕННОСТИ
    В 1865 году были опубликованы результаты работ по гибридизации сортов гороха, где были открыты важнейшие законы наследственности. Автор этих работ - чешский исследователь Грегор Мендель показал, что признаки организмов определяются дискретными наследственными факторами. Однако эти работы оставались практически неизвестными почти 35 лет - с 1865 по 1900.
    В 1900 году законы Менделя были переоткрыты независимо сразу тремя учеными - Г. де Фризом в Голландии, К.Корренсом в Германии и Э.Чермаком в Австрии.
    Итак, дискретные наследственные задатки были открыты в 1865 году Менделем. В 1909 датский ученый В. Иогансен назвал их генами (от греч. слова "происхождение"). К настоящему времени установлено, что ген - единица наследственного материала, ответственная за формирование какого-либо элементарного признака, т.е. единица наследственной информации - представляет собой участок молекулы ДНК (или РНК у некоторых вирусов) хромосомы.
    Хромосомы - это структурные элементы ядра клетки, которые состоят из молекулы ДНК и белков, содержат набор генов с заключенной в них наследственной.

Современная клеточная теория (первую клеточную теорию в 1839 г. создал немецкий биолог Теодор Шванн (1810-1882) утверждает, что, во-первых, существует единство принципа строения и развития растений и животных, во-вторых, основным элементом у растений и животных является клетка, в-третьих, единство организма, структурно состоящего из клеток, обеспечивается за счет их взаимодействия, и, в-четвертых, внутри клетки содержится наследственная информация – информация, обеспечивающая свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом.

Таким образом, все живое состоит из клеток. Лауреат Нобелевский премии по химии (1962 г.) английский биофизик и биохимик, специалист по белкам Джон Кендрью писал, что клетка – это своего рода «атом» в биологии. Точно так же, как химические соединения состоят из атомов, так и живые организмы состоят из огромных скоплений клеток (в организме человека около 1015 клеток). Атомы в физике очень похожи друг на друга: в центре находится положительно заряженное ядро, а вокруг него существует «облако» электронов – т.е. это как бы солнечная система в миниатюре. Клетки, подобно атомам также очень сходны друг с другом. Каждая клетка содержит в середине плотное образование – ядро, которое плавает в «полужидкой» цитоплазме. Все вместе заключено в клеточную мембрану. Основное вещество клеток – белки. Размеры клеток варьируются от 0,1–0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).

Клетки могут существовать как самостоятельные организмы, например, в виде простейших бактерий, так и в составе многоклеточных организмов, подразделяясь на нервные, костные, мышечные, секреторные и половые.

Любой живой организм можно представить в виде динамической системы, в которой одни химические соединения превращаются в другие, создавая необходимую для деятельности организма энергию, обеспечивая обновление белков. Совокупность этих превращений внутри клеток называется обменом веществ – метаболизмом.

Катализаторами химических реакций в организме являются ферменты. Фермент – это биологический катализатор, присутствующий во всех живых клетках и регулирующий обмен веществ; по химической природе практически все ферменты – белки. Белки представляют собой высокомолекулярные органические соединения. По структуре они относятся к полимерам, мономерами в которых (структурными единицами) являются аминокислоты. В центре молекулы аминокислоты находится атом углерода, именно это обстоятельство определяет важность присутствия углерода в процессах зарождения живого во Вселенной. В зависимости от порядка чередования мономеров образуется множество различных видов белков. В организме человека более 106 различных белков.

От набора ферментов зависит, какие именно реакции в организме будут протекать и белки какого вида содержатся в организме. Эти наборы всегда специфичны для каждого организма и определяются генетической информацией, которая «закодирована» в порядке чередования мономеров в полимере.

Решающая роль в биосинтезе белков принадлежит нуклеиновым кислотам. Одним из величайших событий ХХ века является открытие в 1953 г. структур дезоксирибонуклеиновой кислоты – ДНК американским биохимиком Джеймсом Уотсоном и английским биофизиком Френсисом Криком (лауреаты Нобелевской премии по физиологии и медицине 1962 г. (вместе с ними Нобелевскую премию получил и английский биофизик Морис Уилкинс, впервые сделавший рентгенограмму молекулы ДНК) и рибонуклеиновой кислоты – РНК английским химиком Александером Тоддом (Нобелевская премия по химии 1957 г.). Эти открытия позволили существенно развить генетику – науку о наследственности и изменчивости организмов и методах управления ими, основоположником которой является австрийский естествоиспытатель Грегор Иоганн Мендель (1822-1884).

Молекула ДНК состоит из двух цепей, состоящих из мономеров нуклеотидов (нуклеотиды являются основой нуклеиновых кислот) и закрученных одна вокруг другой в спираль. В макромолекуле ДНК человека длиной около 1 м содержится около 109 пар нуклеотидов. Макромолекулы ДНК содержатся в ядрах клеток живых организмов, присоединяя белок, составляют хромосомы (нуклеопротеиды), и являются носителями генетической (наследственной) информации или генетического кода. Этот код «записан» в отдельных участках молекул ДНК путем определенного сочетания рядом стоящих нуклеотидов. Эти участки соответствуют определенным генам: Каждый вид организмов обладает характерным и постоянным хромосомным набором. Если информацию о наследственности человека напечатать, то она займет более 500 тыс. страниц текста.

Ген – единица наследственного материала, ответственная за формирование какого-либо элементарного признака организма. Совокупности генов определяют генотип – наследственную конституцию организма, который, в свою очередь, определяет генофонд (наборы генотипов особей, составляющих данную популяцию). Генетическое тестирование, т.е. определение принадлежности к генотипу, сегодня стало обычной операцией, со стоимостью расшифровки одной «базовой» пары нуклеотидов около $5US. Нарушение последовательности нуклеотидов в цепи ДНК приводят к наследуемым изменениям в генотипе – мутациям.