Курс лекций для студентов специальности 140104 «Промышленная теплоэнергетика»
Вид материала | Курс лекций |
- Курс лекций для студентов специальности 140104 «Промышленная теплоэнергетика» москва, 1244.1kb.
- Курс лекций для студентов специальности 140104 «Промышленная теплоэнергетика» москва, 877kb.
- Курс лекций для специальности 140104 «Промышленная теплоэнергетика» москва 2011, 1206.2kb.
- Курс лекций для специальности 140104 «Промышленная теплоэнергетика» москва 2011, 2337.25kb.
- Рабочая программа для студентов Vкурса по специальности 140104 промышленная теплоэнергетика, 69.12kb.
- Рабочая программа для студентов IV курса специальности 100700 промышленная теплоэнергетика, 243.31kb.
- Рабочая программа для студентов Vкурса специальности 290800. Промышленная теплоэнергетика, 63.46kb.
- Учебно-методический комплекс по дисциплине «экономика» Для студентов специальностей:, 1055.87kb.
- Нисаев Игорь Петрович, д т. н., профессор учебно-методический комплекс, 329.37kb.
- Нисаев Игорь Петрович, д т. н., профессор учебно-методический комплекс, 356.38kb.
Радиоизотопные уровнемеры основаны на сравнении интенсивностей потоков a- или b-излучения, проходящих выше либо ниже уровня раздела двух сред разной плотности. Применение этих приборов целесообразно в случае невозможности использовать иные уровнемеры.
Уровнемеры для сыпучих материалов имеют свои особенности. Характерным отличием сыпучих материалов от жидкостей является непропорциональность передачи давления на дно и стенки емкости в зависимости от уровня в ней контролируемого вещества. Простейшие уровнемеры для сыпучих материалов выполняются с чувствительный элементами, соприкасающимися с поверхностью вещества. Изменение уровня дистанционно передается на вторичный измерительный прибор.
Рис. 46. Лотовый уровнемер.
Наиболее распространены лотовые уровнемеры (рис. 46). Простейшими по принципу действия уровнемерами являются массовые, основанные на взвешивании бункера вместе с заполняющим его материалом. В качестве преобразователя может быть использована гидравлическая мессдоза, которая служит опорой одной из лап бункера. Мессдоза представляет собой стальной корпус с поршнем, на который опирается лапа бункера. Поршень давит на герметизирующую металлическую мембрану. Внутренняя полость корпуса (под мембраной) заполнена жидкостью и соединена с манометром. Давление жидкости в системе мессдоза-манометр равно силе тяжести бункера с материалом, деленной на площадь поршня. Манометр градуируется в единицах массы или уровня. Погрешность таких уровнемеров достигает ±10%. В массовых уровнемерах вместо мессдозы могут применяться и более совершенные магнитоупругие преобразователи, обеспечивающие более высокую точность измерения (их погрешность не более ±5 %). Основной элемент таких преобразователей — металлический чувствительный элемент, магнитная проницаемость которого изменяется при упругой механической деформации. Магнитоупругие преобразователи устанавливаются под опоры бункера и включаются в схему неуравновешенного моста, выходной сигнал которого зависит от степени деформации преобразователя, т.е. от количества материала в бункере.
Из всех электрических методов измерения уровня наиболее применимым является емкостный метод. Это объясняется как простотой конструкции емкостного преобразователя, так и малой чувствительностью их к неоднородностям. Как правило, преобразователи применяются одноэлектродными в виде зондов или изолированных тросов, вторым электродом является стенка бункера или вспомогательный электрод. Основной недостаток таких уровнемеров — разрушение изоляционного покрытия преобразователя, налипание материала, зависимость показаний от изменения электрических свойств материала, вызванного, например, изменением его состава или влажности.
Чувствительным элементом таких уровнемеров представляет массивное тело — лот 1, подвешенное на гибком тросе 2. В начале цикла измерений лот зафиксирован в предельном верхнем положении. Цикл измерения уровня начинается с момента растормаживания лота, при этом под действием собственного веса лот начинает опускаться. В этот же момент сигнальным устройством 3, реагирующим на натяжение троса, включается отсчетное устройство 4, регистрирующее смещение лота относительно первоначального предельного положения. В момент касания лотом поверхности натяжение троса уменьшается и сигнальное устройство отключает отсчетное устройство, одновременно включая механизм подъема лота 5, возвращающее лот в исходное положение, после чего цикл измерения повторяется. Показания отсчетного устройства позволяют определить текущее значение уровня. Перед началом следующего цикла измерения показания отсчетного устройства должны быть сброшены. По такой схеме работает уровнемер сыпучих тел УСТ-2 (пределы измерения 0...25 м, основная относительная погрешность ±2,5 %).
Возможен бесконтактный вариант лотового уровнемера. В схеме такого уровнемера чувствительный элемент — лот не касается поверхности материала, а при любом уровне удерживается на определенном расстоянии от поверхности. Принцип действия основан на зависимости какого-либо реактивного параметра (емкости или индуктивности) чувствительного элемента — лота от положения относительно поверхности материала. Если при исходном положении лота уровень увеличился (т.е. поверхность материала приблизилась к лоту), то изменится его реактивный параметр и следящая система поднимет лот в такое положение, при котором значение реактивного параметра восстановится. Это означает, что положение лота относительно поверхности восстановилось, т.е. по положению лота можно судить об уровне материала. Положение лота измеряется электромеханической схемой и преобразуется в выходной сигнал. Примером такого уровнемера служит уровнемер РУДА-ЛОТ для сыпучих мелкодисперсных материалов. Его верхние пределы измерения от 6 до 40 м, класс 0,5, выходной сигнал аналоговый или цифровой.
Для сигнализации загрузки или опорожнения бункеров применяются сигнализаторы уровня. Среди сигнализаторов уровня электропроводных материалов наиболее простыми являются кондуктометрические. Принцип действия таких сигнализаторов заключается в замыкании электрической цепи «стенка бункера—материал— электрод» при касании поверхностью материала электрода. Основные недостатки при эксплуатации: механическое разрушение электродов под действием материала, возможность ложных срабатываний из-за утечек через запыленную среду (обычно во избежание этого на электроды устанавливают охранные кольца). Надежная работа обеспечивается сигнализаторами, установленными в местах, где исключена возможность образования пустот. В качестве сигнализаторов уровня используются емкостные сигнализаторы с резонансной схемой измерения, например типа СУС. В таких устройствах емкостной преобразователь, образованный электродом и стенкой бункера или двумя электродами, совместно с катушкой индуктивности образуют колебательный контур. На него от высокочастотного генератора подается напряжение постоянной амплитуды фиксированной частоты, близкой к резонансной частоте контура при отсутствии среды в зоне чувствительного элемента. В этом случае с контура снимается сигнал максимальной амплитуды. Появление контролируемой среды в зоне чувствительного элемента вызывает изменение емкости, что приводит к изменению резонансной частоты и вызывает уменьшение амплитуды снимаемого с контура сигнала в соответствии с его амплитудно-частотной характеристикой. При определенной амплитуде снимаемого сигнала срабатывает выходное реле.
Находят применение также сигнализаторы с механическим чувствительным элементом. В сигнализаторе СУСМ — ПЭМ чувствительным элементом является механический щуп, поворачивающийся вокруг собственной оси до момента торможения контролируемым материалом. Привод — пневматический, выходной дискретный сигнал — электрический или пневматический, погрешность срабатывания от ±1 до ±10 мм.
Вопросы для самопроверки
- Дайте определение понятию «Температура».
- В области каких температур работает пирометрия?
- На какие типы по способу контакта с измеряемой средой подразделяются термопреобразователи?
- Что такое раскалибровка термопары?
- Дайте определение понятию «шунтирование» термопары.
- Что такое чувствительный элемент термопреобразователя сопротивления?
- Перечислите достоинства и недостатки термопреобразователей сопротивления.
Практические занятия
Расчет погрешностей измерений
Одна из основных задач практикума – научиться правильно измерять и обрабатывать результаты измерений.
Если несколько раз измеряют значения некоторой физической величины X, например, температуры, в каждом отдельном измерении обычно получают значения, отличающиеся от истинного значения Х0 (оно, разумеется, неизвестно) этой величины. Совокупность измеренных значений X
(1)
называется выборкой, а число измерений n - объемом выборки. Разность Хi=Xt-X0 называется ошибкой или погрешностью измерения.
Рассмотрим классификацию погрешностей. В зависимости от причин, вызывающих погрешности, они подразделяются на: промахи, систематические и случайные погрешности. Промахи представляют собой неверно снятые показания. Возникают они в большинстве случаев в результате небрежности или неопытности наблюдателя. Промахи исключают из дальнейшей обработки.
Систематические ошибки являются следствием причин, вызывающих систематическое отклонение измеряемой величины от ее истинного значения.
Случайные ошибки является следствием воздействия на результат измерения большого количества причин, действие которых незначительно и переменчиво. Например, на результаты точного взвешивания могут влиять случайные движения воздуха, сотрясения и т.п. Учесть случайные погрешности невозможно.
Другое подразделение ошибок измерения - абсолютные и относительные ошибки.
Абсолютной ошибкой (погрешностью) данного измерения называют разность между значением данного измерения Xi и значением измеряемой величины Х0: Х=Х-Х0.
Относительной ошибкой (погрешностью) называется отношение абсолютной погрешности к истинному значению измеряемой величины
.
Относительная погрешность характеризует точность измерений. Например, давление пара в котле Р=100ата. измерено с абсолютной погрешностью PКОТ=5ата., а давление в конденсаторе турбины РКОНД=0,04ата. измерено с погрешностью PКОНД=0,005ата. Хотя абсолютная погрешность в первом случае больше, измерение давленая в котле проведено точнее, поскольку
'.