Анализ финансового состояния предприятия

Вид материалаРеферат

Содержание


2.2. Использование корреляционного, регрессионного анализа в экономическом исследовании
2.3. Значение линейного, динамического программирования в управлении экономикой
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   22

2.2. Использование корреляционного, регрессионного анализа в экономическом исследовании


На современном этапе развития экономики широкое распространение получили различные экономико-статистические методы, которые лежат в основе анализа и плановой работы. Одним из методов анализа, прогнозирования является корреляционно – регрессионная модель, которую может использовать предприятие.

Анализ статистической, или корреляционной, связи предполагает выявление формы связи, а также оценку тесноты связи. Первая задача решается методами регрессионного анализа, вторая — методами корреляционного анализа. Регрессионный анализ сводится к описанию статистической связи с помощью подходящей функциональной зависимости. Корреляционный анализ позволяет оценивать тесноту связи посредством специальных показателей, причем выбор их зависит от вида функциональной зависимости, пригодной для адекватного описания рассматриваемой статистической взаимосвязи.

Один из важных вопросов, возникающих в изучении связей,— установление «направления» зависимости. Пусть для простоты рассматривается связь между двумя признаками y и х. Какой из этих признаков следует считать подверженным влиянию, или результативным (зависимой переменной), какой — оказывающим влияние, или факторным (независимой переменной)?

Первостепенное значение в решении этого вопроса имеет содержательный анализ. Положим, мы рассматриваем связь между производительностью труда рабочих и стажем их работы. По-видимому, результативным признаком следует признать производительность труда, а факторным — стаж рабочего. Не всегда «направление» связи проявляется столь очевидно. Тогда при решении вопроса о выборе результативного признака на первый план выступает постановка содержательной проблемы, для исследования которой используется изучение взаимосвязей.

Основанием метода регрессионного анализа является приближение известных тенденций потребления с помощью математических функций, которые могут быть экстраполированы на будущий период. В соответствии с характером кривой регрессии различаются линейный и нелинейный регрессионый анализ. Метод линейной регрессии целесообразно применять при условно пропорциональном росте потребления. Тогда изменение потребления отражается аппроксимирующей прямой, которая имеет вид:

y = a + b*t.

Коэффициенты "а" и "b" определяются с помощью данных о потреблении, чтобы сумма всех отклонений от аппроксимирующей прямой была минимальной. Поскольку могут иметь место как положительные, так и отрицательные значения отклонений, то это может в худшем случае привести к компенсации оценок. Чтобы этого избежать, следует применять метод наименьших квадратов.

Качество прогноза зависит в конечном итоге от рассеивания исходных данных.

Если кривая потребности не аппроксимируется с помощью прямой, то применяется нелинейный регрессионный анализ. В этом случае кривая потребности аппроксимируется с помощью полинома

y = a + b*t +c*t2+d*t3 +... +z*tn.

В связи с большой трудоемкостью регрессионного анализа его применение целесообразно с помощью ЭВМ, причем программа для расчета коэффициентов a, b, c, d,..., z регрессионной кривой находится с помощью минимизации среднеквадратичного отклонения.

Важным для применения методов прогноза потребности является регулярное, например, ежеквартальное, в крайнем случае, ежегодное наблюдение и контроль для проверки того, что используемые предпосылки остаются действенными. Все указанные здесь методы оценки потребности формализованы, легко программируются, что обеспечивает применение ЭВМ. Выявление ошибок прогноза и контроль имеют особое значение при увеличении срока службы или давности выпуска изделия. При изменении потребности требуется применение краткосрочных прогнозов.

Задачи корреляционного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак.

Задачами регрессионного анализа являются выбор типа модели (формы связи), установление степени влияния независимых переменных на зависимую и определение расчётных значений зависимой переменной (функции регрессии). Решение всех названных задач приводит к необходимости комплексного использования этих методов.

Исследование связей в условиях массового наблюдения и действия случайных факторов осуществляется, как правило, с помощью экономико-статистических моделей. В широком смысле модель – это аналог, условный образ (изображение, описание, схема, чертёж и т.п.) какого-либо объекта, процесса или события, приближенно воссоздающий «оригинал». Модель представляет собой логическое или математическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса, даёт возможность установить основные закономерности изменения оригинала. В модели оперируют показателями, исчисленными для качественно однородных массовых явлений (совокупностей). Выражение и модели в виде функциональных уравнений используют для расчёта средних значений моделируемого показателя по набору заданных величин и для выявления степени влияния на него отдельных факторов.

2.3. Значение линейного, динамического программирования в управлении экономикой


Линейное программирование объединяет методы решения задач, которые описываются линейными уравнениями. Данный метод основан на решении системы линейных уравнений, когда зависимость между изучаемыми явлениями строго функциональна. С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий. Все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу – значит выбрать из всех допустимых вариантов лучший, оптимальный.

Для решения задач линейного программирования могут быть использованы средства, включенные в состав электронных таблиц для персональных компьютеров. Из числа таких средств наиболее распространены таблицы программ MS Excel.

Постановка задачи линейного программирования состоит в формулировке целевой функции и ограничений – уравнений или неравенств.

В задачах линейного программирования может представлять интерес вопрос, имеет ли смысл увеличивать объем доступного ресурса. Например, какова цена увеличения рабочего времени в сборочном цехе на один час в неделю. Эта цена – добавочная валовая прибыль, которая может быть получена, называется двойственной оценкой данного ресурса. Двойственную оценку можно рассматривать как упущенную выгоду или как прибыль, недополученную в результате нехватки ресурса

Динамическое программирование – это метод нахождения оптимальных решений в задачах с многошаговой (многоэтапной) структурой. Многоэтапные процессы в данном случае состоят из последовательности операций, в которых результат предыдущих операций можно использовать для управления ходом будущих операций. Сложные явления современной жизни выявили с большой отчетливостью такие процессы и связанные с ними задачи. Можно с уверенностью сказать, что система управления любым промышленным производством должна в большей или меньшей степени опираться на теорию динамического программирования.

В теории динамического программирования исследуется широкий и важный круг задач оптимизации. Особенностью этих задач является то, что процесс принятия решений в них распадается на ряд последовательных этапов. Естественно, что многоэтапность ассоциируется, прежде всего, с развитием процесса во времени. Поэтому динамическое программирование хорошо применимо к динамическим задачам, в которых должно быть принято не однократное оптимальное решение, а ряд последовательных во времени решений, обеспечивающих оптимальность всего развития в целом. Необходимо отметить, что и многие задачи статического характера оказывается возможным сформулировать и решать как задачи динамического программирования. В то же время задачи динамического программирования успешно решаются методами линейного и нелинейного программирования.

Методы динамического программирования применяются при решении задач оптимизации, которая описывается нелинейными функциями. Типичным примером является разновидность транспортной задачи, когда необходимо загрузить транспортное средство различными видами товаров, которые к тому же имеют различный вес, таким образом, чтобы стоимость груза являлась максимальной. Если обозначить:

В – максимальная загрузка транспортного средства;

в – масса одного предмета каждого вида;

с – стоимость предмета каждого вида;

к – количество предметов каждого вида,

тогда задача может быть описана уравнением

 к * с = макс при ограничении  к * в < В,

сумма от 1 до Н при этом Н – ассортимент загружаемой продукции. Задача решается в Н этапов, причем на первом этапе определяется максимальная стоимость груза из продукции первого типа, затем – первого и второго типов и так далее.