Федеральная программа книгоиздания России Рецензенты: канд психол наук С. А. Исайчев, доктор биол наук И. И. Полетаева Равич-Щербо И. В. и др. Р12

Вид материалаПрограмма

Содержание


1. Нуклеиновые кислоты
А спаривается с Т двойной водо­родной связью, a G
2. Биохимический код наследственности разнообразие белков
Типы и структура генов
Регуляция экспрессии генов
3. Изменчивость на уровне днк
Мутации днк
Тип мутационного события: замена основания
Тип мутационного события: сдвиг рамки считывания
Подобный материал:
1   ...   7   8   9   10   11   12   13   14   ...   50
1. НУКЛЕИНОВЫЕ КИСЛОТЫ

Нуклеиновые кислоты являются непериодическими полимерами. Различают два вида нуклеиновых кислот: дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК). ДНК содержится главным обра­зом в составе хромосом клеточного ядра; РНК находится и в ядре, и в цитоплазме.

ДНК

Во всех живых организмах (за исключением некоторых вирусов) наследственная информация передается из поколения в поколение с помощью молекул ДНК. Каждая клетка организма человека содержит примерно 2 метра ДНК. Обычно ДНК состоит из двух комплементар­ных цепей, формирующих двойную правостороннюю спираль (рис. 4. 1a, б). Напомним, что каждая цепь представляет собой линейный полинуклеотид, состоящий из четырех азотистых оснований: аденина (А), гуанина (G), тимина (Т) и цитозина (С)*. При формировании двойной спирали ДНК А одной цепи всегда спаривается с Т другой, а G — с С. Эти основания называются комплементарными. Принцип селективности этой связи чрезвычайно прост и определяется принци-

* Азотистые основания в соединении с сахаром и фосфатом называются нук-леотидами.

92


а б

Рве. 4.1 a — пространственная модель молекулы ДНК, б — схема строения молекулы ДНК (по 94]



пом наличия свободного пространства. Дело в том, что спиральная лестница ДНК зажата с двух сторон в ограничивающие ее «перила», состоящие из сахара (дезоксирибозы) и фосфатных групп. Пары А-Т и G-С вписываются в «межперильное» пространство безукоризненно, а вот любые другие пары вписаться просто не могут— не помещаются. Так, по своим геометрическим размерам аденин и гуанин (длиной 12 ангстрем* каждый) значительно крупнее тимина и цитозина, длина каждого из которых составляет 8 ангстрем. Расстояние же между «пе­рилами» всюду одинаково и равно 20 ангстремам. Так что пары А-Т и G-С неслучайны: их структура определяется как размером (одно ос­нование должно быть маленьким, а другое — большим), так и хими­ческим строением азотистых оснований. Очевидно, что две цепи ДНК комплементарны друг другу.

Две цепи ДНК соединены друг с другом водородными связями, объединяющими пары нуклеотидов. А спаривается с Т двойной водо­родной связью, a G с С — тройной. Водородные связи относительно непрочны; под воздействием определенных химических агентов они легко как разрушаются, так и восстанавливаются. Американский гене­тик Р. Левонтин, описывая природу связей в молекуле ДНК, предло­жил удачный образ застежки-молнии, которая многократно расстеги­вается и застегивается без каких-либо повреждений самой молекулы.

Особенности макромолекулярной структуры ДНК были открыты американскими учеными Д. Уотсоном и Ф. Криком в 1953 г. Согласно разработанной ими трехмерной модели структуры ДНК, шаг спирали ДНК составляет примерно 34 ангстрема, а каждый ее виток содержит 10 нуклеотидов, расположенных на расстоянии 18 ангстремов друг от друга.

ДНК обладает свойством ковариантной редупликации, т.е. ее мо­лекулы способны копировать сами себя с сохранением возникших в них изменений. Это удвоение происходит в ходе процессов, которые называются митозом и мейозом (см. гл. I). В процессе удвоения (репли­кации) ДНК, который осуществляется с участием ферментов, двой­ная спираль ДНК временно раскручивается, и происходит построе­ние новой цепи ДНК (комплементарной старой).

Структура ДНК динамична: двойная спираль находится в посто­янном движении. Самые быстрые из известных нам процессов, разво­рачивающихся в ДНК, связаны с деформацией связей в каждой из ее цепей; эти процессы занимают пикосекунды (10 " с). Разрушение и создание связей между комплементарными основаниями — процессы более медленные; они занимают от тысячной доли секунды до часа.

Одной из поразительных особенностей ядерной (хромосомной) ДНК является то, что она — не простой набор множества генов. В ДНК

* Ангстрем — десятимиллионная доля миллиметра.

94

высших организмов много последовательностей, которые ничего не кодируют. В организме человека эти последовательности составляют примерно 80-90% всей ядерной ДНК, так что кодирующие последо­вательности — скорее исключение, чем правило. Некодирующие пос­ледовательности ДНК служат удобным источником так называемых полиморфных маркёров.

Малые ДНК. В клетках ядро является не единственным «местом» в орга­низме, где можно найти ДНК. Митохондрии — органеллы, находящиеся не в ядре клетки, как хромосомы, а в цитоплазме, тоже имеют собственную ДНК, но в целом митохондриальной ДНК в клетке значительно меньше, чем ядерной.

В разных организмах количество митохондриальной ДНК не одинаково, оно изменяется от организма к организму. Например, митохондриальная ДНК человека содержит 16 569 пар нуклеотидов. Несмотря на то что в каждой клетке имеется несколько тысяч митохондрий, а организм высших животных построен из миллиардов клеток, митохондриальный геном каждой конкрет­ной особи, по-видимому, одинаков во всех ее митохондриях. Это позволяет использовать митохондриальную ДНК в популяционных и эволюционных ге­нетических исследованиях.

РНК

Рибонуклеиновая кислота (РНК) содержится как в одно-, так и в двуцепочечных молекулах. РНК отличается от ДНК тем, что она со­держит рибозу вместо дезоксирибозы и урацил (U) вместо тимина.

В соответствии с функцией и структурными особенностями разли­чают несколько видов молекул РНК, два из которых — матричная, или информационная, РНК (мРНК, или иРНК) и транспортная РНК (тРНК). Матричная РНК принимает участие в транскрипции гена, транспортная — в его трансляции. Правильная «сборка» последова­тельности аминокислот в белковую цепь происходит с помощью ри­босом — специальных частиц в цитоплазме клеток; они содержат тре­тью форму РНК — рибосомную РНК (рис. 4.2).

днк:гршскршщи мрнк трансляция,

Рис. 4.2. Этапы синтеза белка.

ТРАНСКРИПЦИЯ

При самокопировании ДНК каждая из ее цепочек играет роль образца для создания дополнительной к ней цепочки. Подобным же образом при образовании молекулы матричной РНК одна из цепочек ДНК служит образцом для построения дополнительной к ней цепоч­ки, но уже не из нуклеотидов ДНК, а из нуклеотидов РНК. Иными

95

ыышыш

!Т AT

Л С С А

иРНК

ДНК

Рис. 4.3. Транскрипция — копирование ДНК молекулой матричной РНК.

словами, последовательность нуклеотидов строящейся цепочки РНК определяется последовательностью нуклеотидов молекулы ДНК.

Синтез молекулы мРНК по матрице ДНК называется процессом транскрипции.

Молекула мРНК имеет одноцепочечную структуру. Механизм ее образования подобен тому, который используется при репликации (самокопировании) ДНК (рис. 4.3). После окончания транскрипции мРНК покидает ядро и выходит в цитоплазму клетки, перемещаясь к рибосомам — «фабрикам» по производству белков. На рибосомах и осуществляется синтез белков.

ТРАНСЛЯЦИЯ

Молекула белка представляет собой цепочку аминокислот. Ами­нокислотами называются органические (карбоновые) кислоты, со­держащие, как правило, одну или две аминогруппы (-NH2) и кис­лотную группу СООН (отсюда и название — аминокислоты). Друг от друга аминокислоты отличаются химической группой, называемой радикалом (R).

В табл. 4.1 перечислены двадцать аминокислот, являющихся ос­новным «строительным материалом» при создании белков. (Главные аминокислоты распадаются на три класса в зависимости от природы группы R: нейтральные (полярные и неполярные), т.е. не несущие заряда в растворе; основные, положительно заряженные в растворе; и кислотные, отрицательно заряженные в растворе.)

Белки синтезируются с помощью ферментов путем соединения аминокислот так называемой пептидной связью: СООН-группа одной молекулы аминокислоты присоединяется к NH2-группе другой (при этом выделяется молекула воды). Данный процесс чрезвычайно сло­жен, но его скорость удивительна — аминокислоты строятся в цепоч-

96

Таблица 4.1

Названия аминокислот и их краткое обозначение

Нейтральные

Основные (+)

Кислотные (-)

Неполярные

Полярные

Триптофан (Тrр) Фенилаланин (Phe) Глицин (Gly) Аланин (Ala) Валин (Val) Изолейцин (Ilе) Лейцин (Leu) Метионин (Met) Пролин (Pro)

Тирозин (Туr) Серин (Ser) Треонин (Thr) Аспарагин (Asn) Глутамин (Gln) Цистеин (Cys)

Лизин (Lys) Аргинин (Arg) Гистидин (His)

Глутаминовая кислота(Glu) Аспарагиновая кислота (Asp)

ки полипептидов (белков) со скоростью примерно 100 аминокислот в секунду. В среднем белки содержат 100-1000 аминокислот, и от того, какова последовательность аминокислот в этих длинных цепях, зави­сят структура и функция данного белка. Любая аминокислота одина­ково хорошо соединяется с любой другой (в том числе и с такой же); при этом взаимодействуют между собой одинаковые у всех аминокис­лот группы атомов NH2 и СООН. Благодаря этой способности амино­кислот могут образовываться длиннейшие цепи.

Как же осуществляется синтез белков? Оказывается, что для опи­сания строения конкретного белка достаточно указать последователь­ность аминокислот: какая из них занимает первое место, какая — второе, третье и т.д. Например, строение белка инсулина таково:

аланин — лизин — пролин -

- лейцин -

аланин...

Последовательность нуклеотидов в ДНК, а затем и в мРНК опре­деляет, какой должна быть последовательность аминокислот, т.е. ка­ким будет строение данного белка. Одна цепь ДНК содержит инфор­мацию о химическом строении значительного числа различных бел­ков. Таким образом, последовательность оснований мРНК кодирует последовательность аминокислот. Сведения о строении белков — это «зерно» информации, передаваемой потомкам из поколения в поко­ление; кодирование аминокислот нуклеотидами и называется коди­рованием наследственной информации.

Всего существует 64 возможных тройки нуклеотидов (4 = 64), ко­дирующих 20 аминокислот. Некоторые из нуклеотидных комбинаций играют роль «дорожных знаков», регулирующих синтез белка (напри-

7-1432

97

Рибосомы



-----)Метионии)] Лейцин

Рис. 4.4. Трансляция мРНК (синтез белка).

1-4 — кодоны: метионина, лейцина, валина, тирозина; тРНК: 5 — отделилась от

аминокислоты (лейцина), присоединив ее к белковой цепи; б — молекула тРНК, несущая валин, готова присоединить его к растущей белковой цепи; 7 — молекула

тРНК, несущая тирозин, подходит к мРНК, определяя кодом тирозина, мер, кодируя стоп-сигнал — сигнал окончания транскрибированной последовательности). При этом излишние комбинации нуклеотидов могут либо вообще не использоваться при кодировании наследствен­ной информации, либо служить дополнительными (синонимически­ми) способами записи тех же самых аминокислот.

«Сборка» молекулы белка из аминокислот обеспечивается весьма сложным механизмом, главным образом в рибосомах — особых орга-неллах клетки, находящихся в цитоплазме. Рибосомы примерно напо­ловину состоят из рибонуклеиновой кислоты (отсюда и их название).

Напомним, что в процессе транскрипции формируется мРНК, которая комплементарна определенному участку ДНК. В ходе трансля­ции нуклеотидная последовательность мРНК выступает как основа, матрица для синтеза белка. «Считывание» последовательности мРНК происходит группами по 3 нуклеотида. Каждая аминокислота соответ­ствует определенному сочетанию трех оснований — так называемому триплету (отсюда — триплетный код), или кодону.

«Сырье» (аминокислоты), необходимое для синтеза белка, нахо­дится в цитоплазме. Доставка аминокислот к рибосомам (рис. 4.4) про­изводится с помощью сравнительно небольших специальных молекул транспортной РНК (тРНК). Небольшими эти молекулы, состоящие примерно из сотни нуклеотидов, можно считать только по сравнению с матричной РНК, состоящей из тысяч нуклеотидов.

98

Для каждой из двадцати аминокислот имеется свой тип молекулы тРНК, которая обеспечивает доставку данной аминокислоты в рибо­сому. Синтез белка происходит при движении рибосомы вдоль цепоч­ки мРНК. При этом молекулы тРНК, несущие аминокислоты, выст­раиваются, согласно коду молекул мРНК, в цепочку, параллельную матричной РНК. На рис. 4.4 показано, что молекула мРНК начала синтез белка, включающего, в частности, последовательность амино­кислот ...«метионин—лейцин—валин—тирозин»... Валин был только что добавлен к белковой цепочке, к которой перед этим были присо­единены метионин и лейцин. Кодон мРНК, представляющий собой триплет GUA, соединяется с молекулой тРНК, несущей аминокисло­ту валин. Молекула тРНК доставляет эту аминокислоту к концу расту­щей белковой цепочки и присоединяет валин к лейцину. Следующий кодон мРНК, UAC, привлекает молекулу тРНК, несущую аминокис­лоту тирозин.

Процессы транскрипции и трансляции можно описать, использо­вав метафору французского ученого проф. К. Эле на. На «фабрике» (в клетке) чертежи хранятся в «библиотеке» (в ядре), а для «выпуска продукции» (белков) используются не сами «чертежи» (ДНК), а их «фотокопии» (мРНК). «Копировальная машина» (РНК — полимера-за) выпускает или по одной «страничке фотокопии» (ген), или сразу целую «главу» (набор генов с близкими функциями). Изготовленные «копии» выдаются через специальные «окошки» (поры ядерной мем­браны). Затем их используют на «монтажных линиях» (рибосомы) с «дешифратором» (генетический код) для получения из «заготовок» (аминокислот) окончательной «продукции» (белка).

2. БИОХИМИЧЕСКИЙ КОД НАСЛЕДСТВЕННОСТИ РАЗНООБРАЗИЕ БЕЛКОВ

Белки выполняют в организме самые различные функции. В каче­стве ферментов они служат катализаторами химических реакций; в роли гормонов они, наряду с нервной системой, управляют работой различных органов, передавая химические сигналы. Белки использу­ются в организме и как строительный материал (например, в мышеч­ной ткани), и как транспортные средства (гемоглобин крови перено­сит кислород).

Размах синтеза белка, происходящего в клетке, огромен. Геном человека (набор последовательностей ДНК, определяющих генети­ческую индивидуальность человека) содержит порядка 6 биллионов нуклеотидов, из которых сформировано примерно 100 000 генов, чьи размеры варьируют в пределах от 1000 до 2 миллионов нуклеотидных пар. Если бы мы захотели описать эти 6 биллионов азотистых основа­ний и предположили, что на одной странице можно уместить около

7* 99

3000 нуклеотидов, то нам понадобилось бы примерно 2 000 000 стра­ниц — «многотомное собрание» нуклеотидов (и это для генома только одного человека)!

Описание всех генов человека и расшифровки соответствующих последовательностей ДНК — основная задача международного иссле­довательского проекта «Геном Человека», который является самым крупным генетическим проектом в мире. Благодаря усилиям многих генетических лабораторий мира ученые будут иметь в своем распоря­жении полное описание генома человека.

ТИПЫ И СТРУКТУРА ГЕНОВ

До конца 80-х — начала 90-х годов геном называли сегмент ДНК, кодирующий полипептидную цепочку или определяющий функцио­нальную молекулу РНК. Однако современные молекулярные исследо­вания коренным образом изменили наше представление о структуре гена. Сегодня понятием «ген» обозначается сегмент геномной ДНК или РНК, выполняющий определенную функцию (причем выполне­ние этой функции вовсе не означает, что ген должен быть транскри­бирован и транслирован).

В настоящее время разделяют три типа генов: гены, кодирующие белки, которые транскрибируются в РНК и затем транслируются в белки; гены, кодирующие РНК; и регуляторные гены, которые со­держат нетранскрибируемые последовательности. Гены, кодирующие белки и РНК, называются структурными генами; их активность, «вклю­чение» и «выключение» определяются генами-регуляторами.

По мере проникновения в молекулярную структуру генетического материала все труднее становится находить в молекулах ДНК границы того, что обозначается понятием «ген». Это связано с тем, что про­цессы транскрипции (на ДНК) и трансляции (на мРНК) прямо не совпадают ни по локализации, ни по составу нуклеотидов. Наконец, постоянно увеличивается число открываемых генетических единиц. Так, наряду со структурными и регуляторными генами обнаружены, на­пример, участки повторяющихся нуклеотидных последовательностей, функции которых мы только начинаем понимать, и мигрирующие нуклеотидные последовательности (мобильные гены).

Структура гена сложна, и в данном учебнике она подробно рас­сматриваться не будет. Отметим только наиболее важные моменты. В основном гены высших организмов имеют прерывистую структуру, Обычно они состоят из блоков (экзонов) — транслируемых участков, которые копируются в мРНК, переносимую в цитоплазму, и других блоков (нитронов) — нетранслируемых участков, которых в мРНК нет. На начальном этапе транскрипции ген копируется полностью в пре-мРНК вместе с нитронами, которые затем «вырезаются», обра­зуя зрелую мРНК. Так, некодирующая ДНК присутствует даже внут­ри самих генов.

100

РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ

В каждый конкретный момент клетка не использует всю содержа­щуюся в ее хромосомах генетическую информацию. Например, клет­ки печени вырабатывают специфические ферменты, которые не син­тезируются, скажем, клетками почек, хотя те и другие содержат в своих ядрах одну и ту же ДНК. Кроме того, гены включаются и вык­лючаются на разных стадиях онтогенеза: например, организм челове­ка производит разные типы белка гемоглобина на разных этапах со­зревания организма (ранний эмбриогенез, развитие плода, детство, взрослый возраст). Синтез этих белков контролируется разными гена­ми, которые включаются и выключаются на разных этапах онтогенеза.

Регуляция генной экспрессии осуществляется на нескольких уров­нях при помощи целого набора клеточных механизмов. Общая задача процесса регуляции — избежать напрасных затрат энергии и создать условия для того, чтобы клетка производила наиболее эффективным образом все, в чем она нуждается. Процесс регуляции разворачивает­ся в соответствии с заданной генетической программой или в ответ на изменения как во внутренней, так и во внешней среде организма. Считается, что в геноме человека количество регуляторных генов при­мерно соответствует количеству структурных генов.

3. ИЗМЕНЧИВОСТЬ НА УРОВНЕ ДНК

До сих пор мы преимущественно говорили об изменчивости гено­типа в его широком определении. В последних разделах этой главы речь пойдет об изменчивости на уровне ДНК.

МУТАЦИИ ДНК

В главах I и III были даны определение мутаций и их классифика­ции. Здесь мы рассмотрим только один из видов мутаций — так назы­ваемые точковые мутации, т.е. мутации, вовлекающие отдельно взя­тые нуклеотиды. Точковые мутации представляют собой вставки или выпадения, а также изменения (разные типы замен одного азотистого основания на другое) пары нуклеотидов ДНК (или нуклеотида РНК). В результате мутирования возникают альтернативные формы генов (аллели) — ген становится полиморфным. Одни из этих мутаций явля­ются вредоносными, т.е. вызывающими развитие наследуемых заболе­ваний (главы II, III), а другие — нейтральными, не вызывающими никаких существенных изменений в синтезируемых белках.

Точковые мутации можно разделить на два больших класса. К пер­вому классу относятся те, которые связаны с заменой основания. Мутации второго класса обусловлены так называемым сдвигом рамки считывания.

101

ТИП МУТАЦИОННОГО СОБЫТИЯ: ЗАМЕНА ОСНОВАНИЯ

Замена одного основания в цепи ДНК может привести к тому, что в синтезируемый белок будет встроена «неправильная» аминокис­лота (пример такой трансформации: Мама мыла раму => Мама рыла раму). В результате функция белка может быть нарушена. Например, если первый кодон мРНК (рис. 4.4) скопирован неправильно и вмес­то AUG в последовательности мРНК записана последовательность AGG, то вместо метионина будет синтезирован аргинин. Подобная замена единственной аминокислоты в цепочке сотен аминокислот, состав­ляющих белок, может проявиться по-разному. Спектр этих проявле­ний — от нулевых до летальных — зависит от структуры и функции синтезируемого белка.

ТИП МУТАЦИОННОГО СОБЫТИЯ: СДВИГ РАМКИ СЧИТЫВАНИЯ

Мутации, которые приводят к выпадению или вставке одного и более нуклеотидов, вызывают так называемый сдвиг рамки считыва­ния. В среднем они более вредоносны, чем мутации замены нуклеоти-да. Примеры подобных трансформаций: Мама мыла раму => Ммам ылар аму — выпадение нуклеотида; Мама мыла раму => Мама мыла драму — вставка основания. Сдвигом рамки этот тип мутаций называ­ется потому, что в результате выпадения (или случайного добавле­ния) одного нуклеотида изменяется считывание (трансляция) кодо-нов в молекуле мРНК и, начиная с точки, соответствующей положе­нию мутации, синтезируется искаженная последовательность аминокислот. Например, если в результате мутации теряется второй нуклеотид в последовательности ТАС-ААС-САТ, то эта цепочка счи-тывается как ТСА-АСС-АТ. В результате произведенный белок будет содержать не метионин (ТАС) и лейцин (ААС), а серии (ТСА) и трип­тофан (АСС), что приведет к нарушениям последующих биохимичес­ких процессов.

Часто мутации оказываются гораздо сложнее описанных выше. Один и тот же ген может мутировать в нескольких местах. Например, известно более 60 разных мутаций одного гена ФКУ, каждая из которых приво­дит к развитию фенилкетонурии (гл. II), причем некоторые из этих му­таций соответствуют разным степеням тяжести заболевания. Мутации, происходящие в экзонах (кодирующих участках гена), как правило, вре­доносны. К счастью, большинство мутаций в организме происходит в интронах (некодирующих участках гена). Эти мутации не транскрибиру­ются мРНК и, следовательно, фенотипически не проявляются.

Замечательная особенность мутаций состоит в том, что их дей­ствие может быть различным в разных организмах и фенотипические проявления одной и той же мутации у разных особей могут быть очень разнообразными. Так, обладание мутантным аллелем у одной особи

102

может фенотипически проявиться в форме тяжелого заболевания, а у другой — в форме легкой симптоматики или даже полного ее отсут­ствия. Два ключевых понятия, описывающих изменчивость проявле­ния одной и той же мутации в популяции как совокупности организ­мов (подробнее о генетике популяций в гл. V), — упоминавшиеся (гл. II) понятия пенетрантности и экспрессивности.

Пенетрантностью называется частота проявления аллеля опреде­ленного гена у особей данной популяции. Различают пенетрантность полную (аллель проявляется у всех особей) и неполную (аллель не проявляется у части особей). Количественно ее выражают в процентах особей, у которых данный аллель фенотипически проявляется (100% — полная пенетрантность).

Приведем пример. Известно, что не все носители мутации гена ФКУ стра­дают фенилкетонурией. Пенетрантность мутантного аллеля ФКУ высока и составляет примерно 99%. Это означает, что среди каждых 100 носителей аллеля-мутанта в среднем будет один носитель, не имеющий фенотипичес-ких признаков заболевания — среди 100 мутировавших генов один ген-му­тант не проявится, т.е. не вызовет развитие заболевания.

Экспрессивностью называется степень фенотипической выражен­ности одного и того же аллеля определенного гена у разных особей. Если фенотипический признак, контролируемый данным аллелем, в популяции не варьирует, то говорят о постоянной экспрессивности, в противоположном случае — об изменчивой (вариабельной) экс­прессивности.

Различия экспрессивности означают, во-первых, разную степень пораженности носителей мутации (например, больные ФКУ — носи­тели одной и той же мутации — могут страдать умственной отсталос­тью разной степени), а во-вторых, разные формы фенотипического проявления одной и той же мутации (например, предполагается, что один и тот же ген-мутант вызывает один тип психического расстрой­ства — синдром Туретта — у мужчин и другой тип — синдром навяз­чивых идей — у женщин).

Новые мутации — важнейший источник генетической изменчи­вости, являющейся основой биологической эволюции. Частота мути­рования отдельного гена чрезвычайно мала, но генов в организме много, а каждый биологический вид представлен множеством особей. Так что, когда организм или биологический вид рассматривается как целое, мутация выглядит не как редкое, а как вполне регулярное со­бытие. Предположим, что геном человека насчитывает 100 000 пар генов, а средняя частота мутации на один ген составляет 10-5 . Тогда среднее число мутаций в одном поколении составит (2-105 генов) х х (10-5 мутаций на ген) = 2 мутации на зиготу человека. На Земле живет около 4-109 людей. Если у каждого человека возникает по 2 му­тации, то общее число новых мутаций у ныне живущего населения земного шара составляет 8-109.

103

генетический полиморфизм

Мутации — основной источник генетического полиморфизма, т.е. наличия в популяции нескольких аллелей одного локуса. Полиморф­ная природа ДНК позволила разработать системы методов генетичес­кого и психогенетического анализа, которые позволяют определить и картировать целый ряд генов, вовлеченных в формирование индиви­дуальных различий по исследуемым поведенческим признакам. Так, например, использование полиморфных маркёров ДНК позволило картировать ген на коротком плече хромосомы 4, ответственный за развитие хореи Гентингтона.

В качестве примера рассмотрим два типа ДНК маркёров: поли­морфизм длины рестрикционных фрагментов (RFLP-полиморфизм) и полиморфизм повторяющихся комбинаций нуклеотидов (STR-пo-лиморфизм). Для изучения полиморфности (этот процесс также назы­вается тайпингом ДНК) ДНК выделяется из клеток крови или любых других клеток организма, содержащих ДНК (например, берется со-скоб с внутренней стороны щеки). При использовании технологии RFLP, ДНК, под воздействием ферментов, распознающих специфи­ческие последовательности нуклеотидов в ДНК и избирательно раз­рушающих ее цепь в определенных местах, разрезается на куски-фраг­менты. Такие ферменты впервые были найдены в бактериях, которые производят их с целью защиты от вирусной инфекции.

Существуют сотни таких «рестрицирующих» ферментов, каждый из которых разрезает ДНК в определенном месте, распознавая опре­деленную последовательность оснований; этот процесс называется рестрикцией. Например, один из часто используемых ферментов, EcoRI, распознает последовательность GAATTC и разрезает молекулу ДНК между основаниями G и А. Последовательность GAATTC может быть представлена в геноме несколько тысяч раз. Если в определен­ном локусе эта последовательность различна у разных людей, то у тех из них, которые являются носителями измененной последовательно­сти, фермент в данном локусе ее не разрежет. В результате ДНК гено­мов, несущих нестандартные последовательности, разрезана в дан­ном локусе не будет и, следовательно, образует более длинный фраг­мент. Таким способом распознается разница в структуре ДНК. В результате разреза «рестрицирующими» ферментами могут полу­читься два типа фрагментов, соответствующих данному локусу, — длинный и короткий. Их также называют аллелями. По аналогии с «обычными» генами полиморфизмы могут быть гомозиготными по короткому фрагменту, гомозиготными по длинному фрагменту или гетерозиготными по длинному и короткому фрагментам.

Несмотря на то что существуют сотни «рестрицирующих» фер­ментов, распознающих различные последовательности ДНК, они, как выяснилось, способны отыскать только примерно 20% полиморфных

104

участков ДНК. Были разработаны несколько других типов ДНК-мар­кёров, распознающих полиморфизмы других типов. Широко исполь­зуется, например, полиморфизм повторяющихся комбинаций нукле-отидов (SТR-полиморфизм). Как уже упоминалось, по неизвестной пока причине в ДНК присутствуют повторяющиеся последовательно­сти, состоящие из 2, 3 или более нуклеотидов. Количество таких по­второв варьирует от генотипа к генотипу, и в этом смысле они также обнаруживают полиморфизм. Например, один генотип может быть носителем двух аллелей, содержащих по 5 повторов, другой — носи­телем двух аллелей, содержащих по 7 повторов. Предполагается, что геном человека содержит примерно 50 000 локусов, включающих по­добные повторяющиеся последовательности. Хромосомные координаты многих локусов, обнаруживающих STR-полиморфизм, установлены и теперь используются для картирования структурных генов, служа ко­ординатами на хромосомных картах.

Таким образом, генетический полиморфизм, связанный с при­сутствием так называемых нейтральных (не изменяющих синтезируе­мый белок) мутаций, плодотворно используется в молекулярно-гене-тических, в том числе психогенетических, исследованиях, поскольку генетическую изменчивость, выявленную молекулярными методами, можно сопоставлять с изменчивостью фенотипов. Пока этот перспек­тивный путь используется в подавляющем большинстве случаев для исследования разных форм патологии, дающих четко очерченные фенотипы. Однако есть все основания надеяться, что он будет вклю­чен и в изучение изменчивости нормальных психических функций.