Высшее профессиональное образование т. Я. Дубнищева концепции современного естествознания

Вид материалаДокументы

Содержание


3.9. Эффект Доплера, его исследование и значение для науки
Подобный материал:
1   ...   8   9   10   11   12   13   14   15   ...   53
3.8. Описание волновых процессов. Типы и свойства волн. Спектр и его анализ

Волны могут отражаться (звук от стены, свет от зеркала, водяные волны от преграды) и преломляться (когда ход луча изгибается из-за попадания в среду с другой скоростью распространения). Для понимания волновых свойств необходимо перейти к волнам — плоским и трехмерным, встречаемым в природе. Звук в воздухе распространяется во все стороны от сферического источника. При опускании в воду плоской доски, когда один ее конец погружен и приводится в движение в вертикальном направлении, получаются бегущие по поверхности двухмерные плоские волны. Электромагнитные волны, сохраняющие движение электрической и магнитной компонент в плоскостях, перпендикулярных направлению распространения волны, тоже являются плоскими.

Дисперсией называется зависимость показателя преломления п света от частоты колебаний v (или длины волны X). Ньютон отметил, что разложение белого света в спектр — проявление дисперсии. Направив разложенный на составляющие свет на вторую призму, он получил вновь белый свет, значит, белый свет есть набор цветов с разным показателем преломления п, который связан со скоростью v распространения света в этой среде:

Сравним их для фиолетового и красного цветов:

Посколькучастотыдля той же среды, то и

скоростиТаким образом, в одном и том же веществе ско-

рости света для разных частот различны, различны и показатели преломления п, причем п зависит от v.

Явление дифракции (от лат. diffractus — разломанный) возникает, если плоская волна длинойпопадает на преграду с щелью шириной s. Оно было впервые описано как новый тип отклонения света за отверстием в посмертной публикации Ф. Гримальди в 1665 г. Результаты своих опытов он объяснял по аналогии с волнами вокруг брошенного в воду камня.

118

Явление интерференции (или сложение когерентных волн) наблюдается и для поперечных, и для продольных волн. Оно происходит, если щелей на пути волны несколько или волна распространяется от нескольких источников. Рассмотрим два источника. При размере щелиникаких искажений практически не на-

блюдается. Еслинаблюдается картина, существенно зави-

сящая от того, в какой фазе каждая из волн подошла к щели. Волны называются когерентными, если разность фаз между ними подчинена определенному закону.

Принцип Гюйгенса, объясняющий явление отражения, преломления и двойного лучепреломления света с позиций волновой теории, сформулирован в «Трактате о свете» (Х.Гюйгенс, 1678). Суть принципа в следующем (рис. 3.5): когда волновой фронт проходит через отверстия, каждый элемент фронта ведет себя так, как если бы стал источником излучения.





119

Приняв существование эфира (для распространения звука нужна среда, для света — нет, значит, среда должна быть невесомой, разреженной, проникающей во все поры и в то же время жесткой и упругой), Гюйгенс за механизм распространения выбрал аналогию с пламенем. Каждая точка пламени сообщает движение частицам окружающего эфира, т.е. создает собственную волну, а каждая частичка эфира, которой достигла волна,

становится, в свою очередь, центром новой волны. Так движение и распространяется от точки к точке через вторичные сферические волны, как и пожар. И каждая точка волнового фронта — источник новых волн, огибающая которых станет волновым фронтом в следующий момент, и так далее. Для наблюдения интерференционных эффектов не обязательно иметь отдельные источники света.

Как принцип Гюйгенса и принцип суперпозиции объясняют картину интерференции? Если две щели являются источниками волн, то какова картина интерференции в точке Р, не погасят ли волны друг друга? Вторая волна должна пройти до этой точки большее расстояние, чем первая, и разность хода получитсяЕсли вточно укладывается целое числото в точке Р одновременно окажутся максимумы обеих волн (волны придут в фазе), и амплитуды возрастут. Это условие конструктивной интерференции запишется так: = N, где N = = 0, 1, 2, 3, ..., п. Если же разность хода составляет нецелое число полуволн, то максимумы одной волны окажутся в точке Р смещенными на относительно максимумов другой волны, т.е. окажутся в противо-фазе. Условием этого является равенство:где N= О, 1, 2, 3, ..., я. В точках, где разность фаз волн находится между этими значениями, будет промежуточная картина.

Волновую природу света впервые показал экспериментально английский ученый, врач, человек с очень разносторонними интересами, известный как египтолог, расшифровавший древние иероглифы, первоклассный музыкант Томас Юнг. Ему же принадлежит и термин физическая оптика.

Т. Юнг стал заниматься волновыми движениями в связи с изучением человеческого голоса (периодических изменений усиления и ослабления звука, воспринимаемого ухом). В 1801 —1803 гг. ученый представил материалы своих исследований по свету и звуку Королевскому обществу. Они содержали его формулировку принципа интерференции: для получения интерференции нужно, чтобы обе волны из одного источника (с одинаковым периодом), прошли различный путь до исследуемой точки и, попав в эту точку, шли почти параллельно.

Юнг продемонстрировал эффект интерференции, проколов булавкой два отверстия в прозрачном экране и направив на него свет, проходящий через маленькое отверстие: темные полосы отмечали провалы волн, светлые — сложение их максимумов. Из картины проведенного опыта он первым (и с удивительной точностью) измерил длины волн, составляющие белый свет, и получил 1/36 000 дюйма (0,7 мк) для красного цвета и 1/60 000 дюйма (0,42 мк) для фиолетового.

Интерференция волн с близкими частотами, распространяющимися с одной скоростью и в одном направлении, приводит к биениям. Получается синусоидальная волна с колеблющейся амплитудой (по гармоническому закону), а частота биений равна разности частот отдельных волн (см. рис. 3.3). Чтобы получить биения для звуковых волн, можно провести опыт с двумя аналогичными музыкальными инструментами. Возьмите две струны, звучащие на одной ноте, и, чуть-чуть изменив высоту тона одной из них, вы услышите, как быстро возрастает и умень-

120

шается интенсивность звучания, как бы пульсирует. Если пульсация происходит медленно, попробуйте подсчитать количество биений в секунду.

Дифракционная картина получается, если между щелями расстояния небольшие (порядка длины волны). Такая система щелей называется дифракционной решеткой. Пучок белого света при попадании на нее разбрасывается достаточно широко, и по обеим сторонам от узкой белой центральной полосы становятся видны широкие цветные полосы — спектры. Изучением и измерением спектров занимается специальная наука — спектроскопия. С ее помощью был определен состав и земной атмосферы, и небесных тел. Длины волн измеряются с погрешностью до 10-10, а смещения — еще точнее. Исключительная узость спектральных линий, строгая закономерность распределения их по шкале частот и смещение спектральных линий в электрическом и магнитном полях дали много сведений о строении атомов.

Явление поляризации, свойственное только поперечным волнам, состоит в следующем: луч света, пропускаемый через два кристалла исландского шпата, подвергался двойному лучепреломлению в зависимости от взаимной ориентации осей кристаллов.

В начале XIX в. французский физик Э. Малюс обнаружил, что поляризованным оказывается луч света, отраженный от поверхности воды под угломОказалось, что поляризация возникает при отражении луча от поверхности, а угол определяется коэффициентом преломления вещества. Он объяснил явление полярностью световых корпускул, ориентирующихся в кристалле или при отражении (закон Малюса). Закономерности поляризации изучили до 1815 г., но их объяснил О.Френель только через семь лет, для чего пришлось признать свет поперечной волной. Продольные волны не поляризуются. Обычно направление поляризации связывают с направлением вектора Е, плоскость поляризации — это плоскость, содержащая вектор Е и направление распространения волны. Тогда вектор H будет перпендикулярным этой плоскости (см. рис. 2.6, в). Если направление достается у волны неизменным, волна называется плоско- или линейно-поляризованной.

Большинство источников испускает некогерентный и неполяризо-ванный свет, когда направление вектора E непрерывно меняется в плоскости, перпендикулярной направлению распространения. Неполяризо-ванный свет поляризуется при пропускании через поляризатор. Таковым может служить экран из ряда тонких параллельных проволочек для микроволнового излучения или фильтр из кристаллической пластинки (турмалина, исландского шпата, кварца или пленки кристаллов герапатита, нанесенной на стекло). Неполяризованный солнечный свет приобретает поляризацию при отражении от поверхностей воды, песка, дороги и т.д.

121

При этом, если ось поляроида перпендикулярна плоскости поляризации отраженного света, отражение гаснет. Поляризованный свет применяется для гашения зеркальных бликов при фотографировании, предупреждения ослепления водителя встречным транспортом, регулирования освещенности и др.

Излучаемый каждым атомом свет строго поляризован. Но направления векторов поляризации от всех атомов определяются чисто случайными причинами и не имеют определенной ориентации в пространстве. И световой луч можно уподобить нити, состоящей из множества свитых волнистых волокон. Для поляризации луча надо привести этот хаос в порядок, что и делают те или иные поляризационные фильтры.

3.9. Эффект Доплера, его исследование и значение для науки

Зависимость частоты волнового импульса от скорости при движении источника волн относительно наблюдателя называют эффектом Доплера. Эффект Доплера имеет место для всех типов волн — звуковых в атмосфере, упругих в твердом теле, волн на воде, световых волн.

Австрийский физик и астроном К.Доплер обнаружил эту зависимость в 1842 г. Многие слышали, как меняется звук свистка проносящегося мимо платформы поезда. Первое подтверждение эффекта было получено для акустических волн в опытах голландского физика с группой музыкантов на железной дороге (1845). Часть группы разместилась на платформе, двигавшейся с известной скоростью вдоль перрона, где находились остальные, воспринимая их музыку. Затем музыканты поменялись ролями. Данные, полученные от непосредственных впечатлений участников опыта, хорошо укладывались в формулу Доплера.

Но эффект Доплера можно не только «слышать», но и «видеть», хотя бы в ванне или пруду (рис. 3.6). Периодически погружая палец в воду,



чтобы на поверхности образовались волны, равномерно перемещайте его в одном направлении. Следуя друг за другом, гребни волн в направлении движения пальца будут сгущаться, т. е. длина волны станет меньше обычной, в направлении назад — больше.

Период волны, излучаемой неподвижным источником, равен где— длина волны, излучаемой покоящимся источником, v — скорость волны в среде. Пусть источник движется со скоростью и в сторону

122

наблюдателя. Тогда длина волны, воспринимаемая неподвижным наблюдателем, равна



Поскольку системы отсчета, связанные с источником и наблюдателем, инерциальны,где— частота волны в системе отсчета наблюдателя, - частота волны в системе отсчета источника. Отсюда



Здесь знак «-» соответствует движению источника от наблюдателя, а знак «+» — движению источника к наблюдателю.

Таким образом, частота волны, регистрируемая наблюдателем, отличается от частоты волны, излучаемой источником, на величину, равную доплеровскому сдвигу частоты:



Пусть теперь источник движется со скоростью w. Тогда относительная длина волны, воспринимаемая наблюдателем, равна



где u-w — относительная скорость движения источника и наблюдателя. Отсюда частота волны, воспринимаемая наблюдателем, равна



Для доплеровского сдвига частоты получаем



Следовательно, доплеровский сдвиг частоты равен частоте волны в системе отсчета источника, умноженной на коэффициент, равный относительной скорости источника и наблюдателя, деленной на скорость распространения волны в среде.

Измерение доплеровского смещения в спектрах позволяет с большой точностью и, не возмущая измерением движение и систему, определить скорости движущихся объектов. Французский физик А.Физо предложил (1848) использовать эффект Доплера для измерения радиальной составляющей скорости звезд по сме-

123

щению спектральных линий (эффект Доплера—Физо). Он заметил, что в линейчатых спектрах можно измерять смещение. В 1867 г. английский астроном У. Хеггинс измерил доплеровское смещение водородной линии в спектре Сириуса и сравнил его с той же линией в спектре, полученном в лаборатории. Он заключил, что скорость звезды относительно Земли равна 66,6 км/с, а относительно Солнца — 47,3 км/с. Но для доказательства применимости эффекта Доплера к свету нужно было найти объект, скорость которого можно было бы измерить и другим способом. В 1871 г. немецкий астроном Г. Фогель измерил доплеровские смещения для двух точек солнечного экватора, находящихся на краях диска, и определил их линейную скорость — 2 км/с, что совпадало с результатом, полученным по движению пятен. Затем определили скорости вращения планет, колец Сатурна, звезд вокруг своей оси, ядер и хвостов комет.

Академик А. А. Белопольский считал, что нужно провести проверку в земных условиях, поскольку неизвестны условия излучения в Космосе. С этой целью в 1894 г. он разработал установку, состоявшую из двух колес, к каждому из них в виде лопастей прикреплялись 8 плоских зеркал. Зеркала обоих колес были строго параллельны и вращались с постоянной скоростью. Съемки проводились при неподвижных зеркалах и при вращающихся с частотой 32 — 44 об/с (это соответствовало перемещению изображения со скоростью 240 — 330 м/с). Обработка результатов дала хорошее совпадение по числу оборотов колес и доплеровскому смещению. Вращение производилось в обе стороны поочередно. Опыт длился всего 1 ч, но он бьш наиболее убедительным в применении эффекта Доплера к свету.

Эффект Доплера как основной в оптике движущихся сред сыграл решающую роль в обосновании СТО. Физо поставил (1851) классический эксперимент по определению увлечения эфира движущейся Землей. Он заставил интерферировать два луча света, проходящих столб воды: один в направлении течения, а другой — против него. Если эфир увлекается, то полосы должны смещаться по отношению к положению, соответствующему неподвижной воде. К тому же результату пришли Э. Кеттлер (1871) и Май-кельсон и Морли (1886) — эфир движется вместе с Землей. Ранее Майкельсон пытался обнаружить «эфирный ветер» при движении Земли в эфире, посылая световые лучи по взаимно перпендикулярным путям и заставляя их интерферировать. Хотя линейная скорость Земли (29,7 км/с) много меньше скорости света и установка позволяла засечь и в 100 раз меньший эффект, опыт дал отрицательный результат. Опыты, показывавшие увлечение эфира, противоречили объяснению явления аберрации (от лат. aberratio — отклонение), требовавшей неподвижности эфира. Это противоречие было разрешено отказом от эфира и созданием СТО.

124

Когда картина мира стала меняться на квантовую, возникла необходимость в ином объяснении эффекта Доплера. Как отмечал известный немецкий физик А. Зоммерфельд, казалось почти невозможным трактовать эффект Доплера как обусловленный взаимным сближением или удалением волновых поверхностей. В 1922 г. один из создателей квантовой механики австрийский физик-теоретик Э. Шредингер дал такое обобщение формулы Доплера для частоты на случай больших скоростей.

Метод для измерений скоростей звезд и галактик, основанный на эффекте Доплера, получил в астрономии наиболее впечатляющее применение.

Спектры галактик слабы, измерения достаточно трудны. Американский астроном В.Слайфер с помощью мощного спектрографа, соединенного с телескопом, измерил доплеровский сдвиг в спектре туманности Андромеды (1912), затем — еще в тринадцати спиральных галактиках. Скорости большинства из них были направлены в противоположную сторону от Земли и составляли до 1800 км/с. К 1925 г. Слайфер измерил лучевые скорости еще 45 спиральных галактик, и все они, кроме нескольких ближайших, удалялись, а скорость удаления почему-то возрастала по мере уменьшения их яркости, будто они разбегались от Млечного Пути во всех направлениях с возрастающей скоростью. Чтобы согласовать это с однородным распределением галактик в пространстве, пришлось считать, что это — однородное расширение. Но тогда их лучевая скорость (проекция скорости на луч зрения) должна быть пропорциональна расстоянию до них. Так, если галактика выглядит в 100 раз слабее, значит, она в 10 раз дальше. Галактики из списка Слайфера имели лучевую скорость 1800 км/с, а расположенные в 10 раз дальше — 180000 км/с (половина значения скорости света).



Для формулирования закона пришлось искать возможность определения расстояния до галактик независимым образом. Параллакс для ближних звезд можно измерить по методу, предложенному еще Фалесом, для далеких — искать некий индикатор расстояний. Американский астроном Г.Левитт обратила внимание на четкую зависимость периода цефеид от яркости (рис. 3.7). Цефеиды — наиболее яркие звезды в небольшой ближайшей к нам галактике — Малом Магеллановом Облаке. Название они получили от типичной цефеиды — дельта звезды созвездия Цефея. Датский астроном Э. Герцшпрунг сразу оценил идею Левитт и отка-либровал выведенную ею зависимость период-яркость в период-светимость и определил расстояние до этой галактики в 200 тыс. св. лет. Хаббл с помощью 100-дюймового телескопа обнаружил цефеиды в нескольких галакти-

125




ках и смог оценить расстояние до них. Так Хаббл в 1929 г. вывел прямую линию на графике зависимости скоростей далеких галактик от расстояния до них (рис. 3.8).

Итак, скорости удаления v галактик возрастают пропорционально расстоянию до них: v= Н r, где Н — постоянная Хаббла. Сейчас считается, что H = 75 км/(с • Мпк).

Расширение Вселенной — самое грандиозное из известных в настоящее время явлений природы. Если допустить, что оно и раньше происходило теми же темпами, то можно оценить, когда же началось расширение. Этот промежуток времени составляет 13 — 20 млрд лет. Таким образом, смещение спектральных линий из-за эффекта Доплера привело к новой картине расширяющейся Вселенной.