М. А. Выжигина респираторная поддержка искусственная и вспомогательная вентиляция лёгких в анестезиологии и интенсивной терапии руководство
Вид материала | Руководство |
- Традиционная искусственная вентиляция лёгких у больных с интраабдоминальной гипертензией, 78.01kb.
- Министерство здравоохранния Украины Академия медицинских наук Украины Днепропетровская, 385.06kb.
- Опубликовано в Анестезиология и реаниматология 2004. № с 4-8, 206.91kb.
- Казахский национальный медицинский университет им. С. Д. Асфендиярова центр непрерывного, 1610.51kb.
- Рабочая программа по курсу анестезиологии и реаниматологии Специальность: 040100-«Лечебное, 136.97kb.
- Кафедра анестезиологии, реаниматологии и интенсивной терапии факультета последипломного, 135.04kb.
- «Неинвазивная искусственная вентиляция легких – современная технология респираторной, 76.04kb.
- Техническое задание на аппарат искусственной вентиляции легких высокого класса для, 205.91kb.
- Контрольные задания для студентов заочной формы обучения, 19.24kb.
- «Российская медицинская академия последипломного образования Росздрава», 280.78kb.
ИСКУССТВЕННОЙ И ВСПОМОГАТЕЛЬНОЙ ВЕНТИЛЯЦИИ ЛЁГКИХ
ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
Современная респираторная поддержка невозможна без сложной и надежной аппаратуры, которая должна, иногда в течение длительного времени, осуществлять различные режимы ИВЛ и ВВЛ, с большой точностью обеспечивать заданные вентиляционные параметры, обладать высокой чувствительностью к изменениям давления или потока газа в дыхательном контуре, согревать и увлажнять вдыхаемую газовую смесь, строго поддерживать постоянство её состава и т.д. Требования к современным респираторам чрезвычайно высоки, но не меньшие требования предъявляются и к следящей аппаратуре. Полноценный мониторинг — одно из обязательных условий успешной и безопасной для больного респираторной поддержки.
Однако мало иметь в своем распоряжении хорошие аппараты. Необходимо знать их возможности и правильно выбирать как способы и режимы респираторной поддержки, так и параметры, которые следует мониторировать в тех или иных условиях.
Глава 25 '' ."y~j;."' ::'"-"-'"" •• ' '-'- '" "•"'•
МОНИТОРИНГ РЕСПИРАТОРНОЙ ПОДДЕРЖКИ
При использовании современных методов респираторной поддержки требуется тщательный и постоянный контроль функции многих жизненно важных параметров организма. Применяя те или иные режимы ИВЛ или ВВЛ, врач должен знать не только давление в дыхательных путях или минутный объем дыхания, но и состояние газообмена, функцию сердечно-сосудистой системы, метаболизма и другие показатели, например темп выделения мочи, и т.д.
В настоящее время многие респираторы снабжены комплексом контрольных приборов, позволяющих оценивать ряд параметров, имеющих клиническое значение. Кроме того, во время операции и в процессе интенсивной терапии используют мониторные блоки, дающие очень важную дополнительную информацию. Широко применяют как неинвазивные, так
271
и инвазивные методы мониторинга, причем последние в некоторых клинических ситуациях совершенно необходимы. В то же время в повседневной практике неинвазивные методы исследования дают необходимый минимум информации для принятия решений. Поскольку врач просто не в состоянии воспринять одновременно многочисленные цифры, которые сообщает ему монитор (не более 7, по данным A.H.Morris, 1994), необходимо ограничиться слежением за наиболее важными и информативными для каждой клинической ситуации показателями. Напомним, что все мониторные комплексы снабжены звуковыми и световыми сигналами, включающимися при выходе того или иного параметра за заранее установленные пределы. Следовательно, необходимо установить эти пределы так, чтобы они соответствовали индивидуальной (желательной) «норме» данного больного, и аппарат не подавал ложных сигналов. Например, если у больного в течение многих лет пульс был в пределах 50—55 в минуту, бессмысленно устанавливать нижний предел по частоте сердечных сокращений на 60 в минуту.
25.1. Мониторинг вентиляционных параметров
Вентиляционные параметры (МОД, дыхательный объем, частота вентиляции и т.д.) чаще всего представлены на цифровых индикаторах и дисплеях современных многофункциональных респираторов. При оценке таких параметров, как МОД и дыхательный объем, следует прежде всего обращать внимание, насколько они отличаются от заданных величин, установленных управляющими ручками или сенсорами. Разница более 10 % свидетельствует либо о негерметичности дыхательного контура, либо о дополнительной работе, выполняемой больным. Во время проведения ИВЛ мы рекомендуем в первую очередь контролировать именно МОД, а не дыхательный объем, который более лабилен. При всех режимах ВВЛ главным мони-торируемым параметром является суммарная частота вентиляции, что неоднократно отмечалось выше.
Важный параметр — отношение времени вдох : выдох. На респираторах с устанавливаемым потоком он может произвольно меняться в зависимости от состояния механических свойств лёгких и в определенных условиях даже становиться инверсированным.
Очень важную информацию дают кривые давления и потока в дыхательных путях [Rasanen J., 1994]. При ИВЛ они должны быть совершенно одинаковыми во всех дыхательных циклах. Изменение формы кривых свидетельствует о появле-
272
Рис. 25.1. Петля «объем—давление» при ИВЛ без ПДКВ (а) и ИВЛ с ПДКВ (б). Запись на мониторе респиратора «Puritan-Bennett 7200». '•'
нии у больного самостоятельного дыхания (окончание действия миорелаксантов, нарушение адаптации к респиратору). При ВВЛ кривая давления во время инспираторной попытки не должна спускаться ниже нулевой линии. По кривой потока можно распознать негерметичность дыхательного контура (см. главу 21), наличие «внутреннего» ПДКВ (см. главу 2). Существенную информацию можно получить по петлям «объем—давление» и «поток—объем» (рис. 25.1). Незамкнутость петли «объем—давление» свидетельствует об утечке воздуха, её смещение вправо от средней линии — о наличии ПДКВ, смещение части петли влево — об увеличенной работе дыхания, выполняемой больным, отклонение к горизонтальной линии — об увеличении бронхиального сопротивления. Вызывать эти петли на экран монитора время от времени необходимо, но мы рекомендуем постоянно иметь перед глазами на экране кривые давления и потока.
Кроме кривой, величины давления в дыхательных путях отражаются на цифровых индикаторах. Обычно визуализируются четыре величины: РПик> давление в конце плато (РПлат)> давление в конце выдоха и среднее давление дыхательного цикла. Все они имеют большое значение, но если стабильность' работы респиратора не внушает сомнения, давление в конце выдоха можно проверять эпизодически, тем более что оно хорошо видно на стрелочном манометре, обычно имеющемся на панели респиратора. Рплат важно для выбора параметров при переходе от традиционной ИВЛ к ИВЛ с управляемым давлением или методам ВВЛ с поддержкой дыхания давлением, вентиляции с двумя фазами положительного давления в дыхательных путях (см. главы 5, 6 и 10). Среднее давление дыхательного цикла имеет особое значение при проведении ВЧ ИВЛ или ВЧ ВВЛ, так как отражает наличие и, в определенной степени, величину «внутреннего» ПДКВ.
Пожалуй, наибольшее значение имеет величина РПик- Она свидетельствует о «жесткости» лёгких и сопротивлении дыха-
273
тельных путей, безопасности выбранного режима ИВЛ и ВВЛ в отношении баротравмы лёгких, сигнализирует о случайной разгерметизации дыхательного контура. Внезапное повышение рпик может свидетельствовать об окклюзии дыхательных путей, перегибе эндотрахеальной трубки или образовании «грыжи» раздувной манжетки, остром бронхоспазме, пневмотораксе. Кратковременное повышение Рпик вызывают кашле-вые и рвотные движения.
Современные мониторы, как встроенные в респиратор, так и являющиеся отдельным прибором, автоматически вычисляют и показывают графически или цифрами во время ИВЛ (но не при всех режимах ВВЛ!) такие важные показатели, как растяжимость системы лёгкие—грудная клетка и сопротивление дыхательных путей. На значении этих показателей мы неоднократно останавливались выше. Здесь отметим, что весьма важную информацию дает величина отношения между статической растяжимостью системы лёгкие—грудная клетка и дыхательным объемом (C/Vx), которое прямо коррелирует с объемом внутриле-гочного шунта [Затевахина М.В., Цимбалов С.Г., 1996].
25.2. Мониторинг газообмена
Современные стандарты мониторинга безопасности обязательно включают в себя контроль за состоянием газов во вдыхаемом и выдыхаемом воздухе, а также за насыщением крови кислородом. FiC-2, задаваемое респиратору врачом, контролируется специальным датчиком оксиметра, включенным в канал вдоха. Особое значение приобретает контроль FjO2 в процессе анестезии с использованием закиси азота (см. главу 15). Кроме того, независимо от канала вдоха в канале выдоха имеется свой оксиметрический датчик. Информативным показателем является разница между FjC и FC» которая отражает потребление организмом кислорода.
Эффективность оксигенации определяется величиной SaO2, которая зависит как от вентиляции лёгких, так и от состояния гемодинамики. Этот важный параметр необходимо монитори-ровать постоянно с помощью пульсоксиметрического датчика. Существуют два вида датчиков — для установки на палец и на мочку уха. Последний может быть также установлен на кончик языка или носа (например, у ожоговых больных или при недостаточном периферическом кровотоке). Существенное значение в оценке динамики SaC-2 имеет также форма пульсо-ксиметрической кривой. Снижение сатурации может быть не только следствием нарушений газообмена в лёгких, но и результатом периферического сосудистого спазма различной этиологии. Такая ситуация отразится в виде снижения ампли-
274
туды кривой и исчезновении на ней дикротической волны. Кстати, укажем, что первым действием врача при снижении «SaO2 должно быть перемещение датчика пульсоксиметра на другой палец или мочку уха, чтобы избежать неправильной оценки состояния больного.
Исключительно большое значение в оценке газообмена и го-меостаза в целом принадлежит капнометрии, мониторируемой в режиме on line. При ИВЛ в процессе анестезии содержание ССО2 в конце выдоха является, пожалуй, если не единственным, то главным показателем адекватности вентиляции метаболическим потребностям организма. FetCO2 (или Pet,CO2) является высокочувствительным параметром, реагирующим на операционный пневмоторакс, сдавление или выключение из вентиляции лёгкого (повышается), нарушения гемодинамики (снижается). FetCO2 также очень быстро и резко снижается даже при частичной разгерметизации дыхательного контура. Установлена высокая прямая корреляция между FetCO2 и сердечным выбросом [Флеров Е.В. и др., 1995]. Сегодняшний уровень развития газового мониторинга открывает путь для рутинного определения параметров механики дыхания во время анестезии [Merilajnen P.T., 1996].
Меньшее значение имеет величина FetCC>2 при проведении ИВЛ в интенсивной терапии, поскольку респираторную поддержку при ней осуществляют, особенно в остром периоде, в режиме гипервентиляции и об адекватности -вентиляционных параметров судят не по одному показателю, а по степени адаптации больного к респиратору. Однако важную информацию дает сопоставление PetCO2 и РаСОз- В норме разница между ними составляет' 5 мм рт.ст.; повышение этой разницы говорит о возросшем отношении vd/vt-
Весьма информативна форма кривой капнограммы (рис. 25.2). Наличие на ней четко выраженного плато свидетельствует об удовлетворительном распределении воздуха в лёгких. Чем хуже выражено плато, тем в большей степени нарушены вентиляционно-перфузионные отношения в лёгких.
Мониторинг газообмена проводят также по газам крови с использованием проточных (фиброоптическая оксиметрия) и транскутанных датчиков. Последний способ в настоящее время несколько утратил свое значение в связи с внедрением методов пульсоксиметрии и капнометрии выдыхаемого газа. Ограниченное применение транскутанной газометрии связано с её зависимостью от состояния периферического кожного кровотока. Однако этот метод по-прежнему используют для оценки эффективности газообмена при ВЧ ИВЛ, при которой определение FetCO2 невозможно из-за большой частоты вентиляции.
Исследование газов крови микрометодом Аструпа также имеет большое значение, особенно в интенсивной терапии. Мо-
275
Рис. 25.2. Кривые давления (Paw) и потока (Flow) в дыхательных путях, капнограмма (FCO2) при ИВЛ (а) и поддержке дыхания давлением (6). Видно существенное улучшение формы кривой капнограммы и повышение (нормализация) FetCO2 при переходе от ИВЛ к ВВЛ. Запись на мониторе «AS-3» фирмы «Datex». f! к| *?»Т'<* ) ."S***1"' •: ' -. к"'•;•'•
ниторинг дыхательных газов не заменяет определения газового состава артериальной и венозной крови, а дополняет его и дает возможность непрерывного оперативного контроля. Следует иметь в виду, что ЗаОз, измеренное с помощью пульсоксиметра, а особенно с использованием транскутанного датчика, как правило, ниже, чем в артериальной крови, а РаСОз выше, чем PetCOg. Оценка параметров газов крови приведена в главе 1.
25.3. Мониторинг гемодинамики . *н
Наибольшую информацию о состоянии кровообращения как в малом, так и в большом круге можно получить с помощью ин-вазивных методов. Обычно используют введение катетера Swan-Ganz в легочную артерию, что позволяет определить сердечный выброс методом термодилюции, а также канюлируют лучевую артерию. Прямое измерение давления в камерах сердца, легочной артерии и давления заклинивания, которое приравнивается к давлению в левом предсердии, позволяет получить многостороннее представление о центральной и легочной
276
гемодинамике. Комплексный мониторинг также дает возможность контролировать метаболические функции лёгких путем «исследования крови, притекающей к лёгким (Swan-Ganz) и оттекающей от них (лучевая артерия). Многофакторный мониторинг позволяет также оценить состояние микроциркулятор-ного русла лёгких, рассчитать капиллярное давление и сопротивление пре- и постальвеолярных сосудов.
Большое значение имеет систематическое определение объема внесосудистой жидкости лёгких (в том числе её интерсти-циальной и внутриклеточной фракций) с использованием метода электроимпедансных индикаторов. Метод позволяет также определять сердечный выброс без катетеризации легочной артерии и в какой-то степени больше соответствует требованиям интенсивной терапии, хотя его с успехом применяют и в интраоперационном периоде.
Волюметрический мониторинг правого желудочка в реальном времени позволяет контролировать систолическую и диасистоли-ческую функции правого желудочка [Флеров Е.В., 1996].
Примеры выбора и оценки различных режимов респираторной поддержки с помощью комплексного мониторинга приведены в главе 16. Например, артериальная гипероксия при высоком РтОз, если к ней нет специальных показаний, на первый взгляд должна улучшать состояние больного (высокое РаО2 всегда расценивается, как благо), но на самом деле вызывает ряд тяжелых нарушений микроциркуляции и гидродинамики в лёгких.
Трудно переоценить значение всех этих данных при выборе рациональных методов и режимов респираторной поддержки как в анестезиологии, так и особенно в интенсивной терапии1.
Г л а в а 26 •
АППАРАТЫ ДЛЯ ИСКУССТВЕННОЙ И ВСПОМОГАТЕЛЬНОЙ ВЕНТИЛЯЦИИ ЛЁГКИХ (РЕСПИРАТОРЫ)
Единая классификация респираторов до настоящего времени не разработана. На практике принято осуществлять их группировку по ряду характерных признаков: способу действия, виду энергии, используемой при работе аппарата, способу переключения фаз дыхательного цикла.
1 Такой комплексный подход к мониторированию эффективности респираторной поддержки стал возможен благодаря созданию программы «SC (Supercalc)», разработанной в лаборатории компьютерного мониторинга Научного центра хирургии РАМН (зав. Е.В.Флеров). Программа включает в себя 42 измеряемых параметра и 36 расчетных.
277
По способу действия различают несколько типов аппаратов. Респираторы наружного действия, как на все тело, так и на грудную клетку («железные лёгкие», кирасовые респираторы, кровать-качалка), представляют лишь исторический интерес. В настоящее время они полностью вышли из практического применения в силу их громоздкости, дороговизны и низкой эффективности. В качестве аппаратов для вспомогательной вентиляции лёгких могут представлять определенный интерес устройства, предназначенные для создания переменного давления или передачи высокочастотных осцилляции на грудную клетку (см. главу 7).
Респираторы внутреннего действия. Все современные респираторы, функционирующие по принципу вдувания газа в лёгкие, позволяют обеспечить адекватную вентиляцию лёгких у любых больных с преодолением как эластического, так и аэродинамического сопротивления дыхания.
К третьему типу можно условно отнести электростимуляторы дыхания, принципом действия которых является управление вентиляцией путем периодического раздражения диафрагмальных нервов или диафрагмы электрическими импульсами (см. главу 14).
По виду энергии, используемой при работе респираторов, также различают несколько типов аппаратов ИВ Л.
Работа аппаратов с ручным приводом, представляющих собой мех или саморасправляющийся эластичный резервуар (дыхательный мешок) с нереверсивным клапаном, основана на использовании мускульной энергии. Компактность, простота конструкции, возможность экстренного применения в любой ситуации — отличительные особенности респираторов данного типа. Наибольшее распространение получила модель фирмы «Ambu» (Дания). Отечественная разработка — АДР-1000 позволяет обеспечить дыхательный объем до 1200 мл, а минутную вентиляцию лёгких — до 25 л/мин.
Респираторы с механическим приводом в зависимости от вида используемой энергии подразделяются на следующие типы:
1. Аппараты с электроприводом, функционирующие от внешнего источника электроэнергии или встроенного аккумулятора.
2. Аппараты с пневматическим приводом, приводимые в действие энергией сжатого газа.
3. Аппараты с комбинированным приводом, в которых управление осуществляется за счет электроэнергии, а вместо генератора вдоха используется сжатый газ из внешней пневмосети или автономного компрессора.
Использование электропривода позволяет эффективно осуществлять управление современными многофункциональными респираторами на основе микропроцессорной техники, обеспечивает получение, анализ, отображение различной информации как о режимах и параметрах работы респиратора,
278
так и биологической информации о состоянии пациента (биомеханика дыхания, газообмен, метаболизм).
В то же время респираторы с пневмоприводом технически более просты, компактны, что делает их предпочтительными для применения в экстренных ситуациях и при транспортировании больных.
Потенциальные преимущества аппаратов с комбинированным приводом связаны с возможностью упрощения конструкции за счет исключения из структуры респираторов генератора вдоха.
По способу переключения фаз дыхательного цикла различают следующие основные типы респираторов.
1. С переключением по давлению — аппараты, в которых переключение со вдоха на выдох происходит после достижения заданной оператором величины давления в дыхательном контуре респиратора. В аппаратах данного типа вследствие выраженной зависимости режима работы от эластического и аэродинамического сопротивления основные параметры вентиляции (частота, дыхательный объем) могут существенно меняться.
2. С переключением по объему. При этом смена фазы вдоха на выдох происходит после того, как в дыхательные пути поступит заданный дыхательный объем. В действительности генерируемый респиратором дыхательный объем по ряду причин может существенно отличаться от реального объема газа, поступившего в дыхательные пути. В связи с этим необходимы постоянный контроль за параметрами вентиляции в магистрали выдоха и наличие соответствующих сигналов тревоги.
3. С переключением по времени. При этом задается частота дыхательных циклов и устанавливается отношение времени вдох:выдох внутри цикла. Принцип смены фаз дыхательного цикла по времени в настоящее время находит все большее применение, поскольку при этом значительно легче организовать управление респиратором как во время искусственной, так и вспомогательной вентиляции лёгких.
Подробное изложение этих вопросов читатель может найти в работе Р.И.Бурлакова и соавт. (1986).
В настоящее время в мире серийно производится более 200 моделей респираторов. Приводим самую общую характеристику лишь некоторых респираторов, получивших или получающих определенное распространение в нашей стране, уделив основное внимание их функциональным возможностям.
26.1. Стационарные респираторы
Респираторы семейства РО. Среди стационарных респираторов отечественного производства, предназначенных для длительной ИВЛ, в течение многих лет были наиболее распространены аппараты типа РО (объемные респираторы). Различ-
279
ные модификации этих респираторов (РО-1, РО-2, РО-3, РО-5, РО-6) по существу не имели принципиальных различий по функциональным возможностям. Последняя модель РО-9Н (рис. 26.1) оснащена наркозным блоком, обеспечивает возможность использования лишь нескольких базовых режимов ИВЛ: с пассивным, активным (целесообразность применения этого режима весьма дискутабельна) выдохом и ПДКВ.
Традиционно в последних модификациях имеется блок вспомогательной вентиляции для проведения ВВЛ «триггерным» способом, ограниченные возможности которого отмечены выше (см. главу 9).
Как и во всех респираторах с переключением по объему, в аппаратах типа РО частота вентиляции определяется устанавливаемыми значениями дыхательного объема и минутной вентиляции.
Следует отдать должное надежности, долговечности и простоте в управлении респираторов РО, но нельзя не отметить их ограниченности в функциональном отношении по сравнению с современными зарубежными моделями.
Респиратор «Спирон-201» (рис.26.2). Аппарат работает по принципу переключения по времени. Он обеспечивает возможность проведения управляемой ИВЛ с пассивным, активным (традиционно?) выдохом и ПДКВ, инспираторной паузой, периодическим раздуванием лёгких, расширен диапазон регулирования соотношения времени вдох : выдох, включая и обратные (инверсированные) соотношения — до 3 : 1. Вспомогательную ИВЛ можно проводить триггерным способом (переключение с выдоха на вдох по «откликанию» на давление), возможно проведение синхронизированной перемежающейся принудительной вентиляции (ППВЛ), аппарат обеспечивает возможность самостоятельного дыхания пациента в режиме постоянного положительного давления (СДППД). Дополнительные возможности респиратора: автоматическое обеспечение нагрева и увлажнения вдуваемой смеси, проведение аэрозольной терапии и аспирации.
Респиратор «Фаза-5» (рис.26.3) представляет последнюю модификацию ранее разработанных моделей «Вдох» и «Фаза-3». Аппарат обеспечивает проведение искусственной и вспомогательной вентиляции лёгких в следующих режимах: традиционная ИВЛ, ИВЛ с инспираторной паузой («плато»), ИВЛ с ПДКВ, ППВЛ, СДППД, высокочастотная вентиляция под положительным давлением (контролируемая по объему). Работает по принципу переключения фаз дыхательного цикла по времени. Частота вентиляции в обычном режиме — от 10 до 40 циклов в минуту, в высокочастотном режиме — от 40 до 160 циклов в минуту. Отношение времени вдох : выдох от 1: 2,3 до 1,5 : 1. Аппарат снабжен паровым увлажнителем с регулируемым нагревом воды. Предусмотрена аварийная звуковая и световая сигнализация при разгерметизации дыхательного контура, превышении уровня заданного давления на вдохе, перегреве газовой смеси в увлажнителе. Осо-
280
бенность респиратора «Фаза-5» состоит в возможности многократной стерилизации дыхательного контура без его разборки , перегретым паром с помощью входящего в комплект аппарата увлажнителя.
Респиратор «Servo Ventilator 900C» (рис.26.4) фирмы «Siemens» (ФРГ). Аппарат предназначен для длительной ИВЛ и для ВВЛ. Как и подавляющее большинство современных зарубежных респираторов, он имеет комбинированный привод: от электросети осуществляется питание систем управления и измерения, источником газового потока служат сжатые газы: кислород, воздух (от придаваемого компрессора), закись азота (при комплектации наркозным 'блоком аппарат используют также в общей анестезии). Респиратор обеспечивает традиционную ИВЛ (с задаваемыми МОД — до 45 л/мин и частотой — от 10 до 120 циклов в минуту), ИВЛ с инспираторной паузой, длительность которой регулируется от 5 до 30 % от времени вдоха, ИВЛ с ПДКВ до 50 см вод.ст., периодическое удвоение вдоха, ИВЛ с управляемым давлением. Отношение вдох : выдох регулируется дискретно от 1 : 5 до 4 : 1. Респиратор позволяет осуществлять выбор различных режимов ВВЛ: триггерная ВВЛ по давлению, поддержка давлением, синхронизированная ППВЛ, их сочетание, СДППД и проводить ручную ИВЛ с помощью мешка. Имеется возможность выбора двух видов потока: постоянного и повышающегося. Паровой увлажнитель обеспечивает нагревание вдыхаемого газа до заданной температуры у тройника, которая поддерживается автоматически. Цифровое табло показывает (по выбору): дыхательный объем (на вдохе и на выдохе), МОД (на выдохе), Рпик, РПЛат> среднее давление, FiO2 (в %), частоту дыхания. Имеются также стрелочные манометр и указатель МОД. Дополнительно аппарат может быть укомплектован анализатором СО2 в выдыхаемом воздухе (на цифровом табло отражаются по выбору FetCO2, VCO2, vdh Уд), а также блоком контроля механики дыхания (С, R на вдохе и выдохе, уровень ПДКВ). Стыковка с многоканальным монитором (рис. 26.5) позволяет получить отображение ряда параметров в графическом виде.
Респиратор «Engstrom Elvira» (рис. 26.6) фирмы «Gam-bro» (Швеция) обеспечивает те же режимы ИВЛ и ВВЛ, а также режим ППВЛ с принудительным поддержанием заданной минутной вентиляции (Extended mandatory minute volume — EMMV, см. главу 11). Кроме того, обеспечен выбор трех форм кривых потока: постоянной, повышающейся и снижающейся. Регулируются: дыхательный объем (от 0,1 до 2 л), частота вентиляции (до 60 циклов в минуту), отношение вдох : выдох (от 1 : 3 до 3 : 1). Система контроля за состоянием пациента позволяет определять давление в дыхательных путях, растяжимость лёгких и грудной клетки (С), аэродинамическое сопротивление
281
••••мяняяншвввнввпнввптяпшя
Ьч-Чачй» ftjf.y? Л41> 4b,iiwlt,p> ,are;,ti,u]iii-icj*iKi1fii« Ь*.£ьлм*
(R) на вдохе. Важно отметить.что с помощью микропроцессора осуществляются запоминание и сравнение текущих значений показателей биомеханики дыхания со значениями, измеренными 15 мин или 2 ч назад. Это позволяет оценить динамику состояния пациента. На экране монитора отражаются кривые давления и потока в дыхательных путях. Функциональные возможности респиратора существенно расширяются за счет использования дополнительных блоков-модулей: анализатора содержания СО2 и ССО2 , во вдыхаемом и выдыхаемом газе и метаболического компьютера (рис. 26.7). С помощью последнего можно определить потребление кислорода, выделение углекислоты, дыхательный коэффициент и рассчитать энергетические потребности.