Варшавский В. И., Поспелов Д. А

Вид материалаДокументы

Содержание


Г л а в а 6 ДИАЛЕКТИКА ПРОСТОГО И СЛОЖНОГО
В и Г. Для удобства будем обозначать такой автомат как А
Подобный материал:
1   ...   5   6   7   8   9   10   11   12   13
§ 5.5. «Почему йога —не наш путь?»

Именно так называл свое научное выступление на одной из школ по коллективным моделям поведения известный советский кибернетик М. М. Бонгард. В этом выступлении он говорил о том, что излишняя централизация в биологических организмах может нанести огромный вред. При возрастании централи­зации организм все большие ресурсы будет затрачи­вать на обработку информации для принятия решений, ему будет оставаться все меньше времени на поисковую и адаптационную деятельность. И М. М. Бонгард привел в качестве примера адеп­тов учения йогов, которые в своей практике часто достигают того, что «вытаскивают наверх, в созна­ние» управление теми физиологическими процессами, которые протекают у человека на уровне автоном­ных и полуавтономных систем управления. Они, на­пример, могут сознательно регулировать ритм биения

173


сердца, сокращать и расслаблять желудок, созна­тельно управлять температурой тела и т. п. Но к чему это приводит? В пределе, когда все автоматизмы подавлены, йог должен тратить все свое вре­мя и ресурсы мозга на то, чтобы все эти процессы протекали без срывов, иначе жизнь его может ока­заться под угрозой. Но тогда ему уже не хватит времени ни на что другое, ни на размышления, ни на созерцание. Конечно, индийские йоги не попада­ют в подобное положение. Автоматизмы они сохра­няют. И вмешиваются в течение физиологических процессов лишь изредка. Да и цель их иная. В ов­ладении секретом управления автономными процес­сами, забота о которых вытеснена из сферы созна­ния, они видят еще одну ступень в овладении зако­нами управления своим телом. Но аналогия, подмеченная М. М. Бонгардом, очень ярка и поучи­тельна.

Мы много говорили о параллельных процессах и методах их взаимодействия. В' человеческом организ­ме формы этого взаимодействия куда богаче. Но суть явления сохраняется. Процессы текут почти автоном­но, синхронизуясь во времени за счет редких перио­дических или специфически определяемых ситуацией сигналов.

Однако децентрализация, при которой подсистемы работают практически автономно, обладает одним весьма существенным недостатком, о чем мы еще не говорили, хотя читатели могли бы и сами догадаться о нем. По крайней мере во многих наших моделях, функционирующих в быстро меняющихся средах, он был явно заметен. Этот недостаток связан с тем, что за децентрализацию управления приходится пла­тить увеличением времени адаптации. То, что по единому приказу из центра можно сделать в системе за весьма короткое время, если центральное звено заблаговременно получит информацию об изменени­ях свойств среды, в децентрализованной системе бу­дет осуществляться весьма медленно. Наверное, поэтому в биологических организмах (и у человека, в частности) имеются как бы два уровня: децентра­лизованный и централизованный по управлению. Од­нако эти уровни не дублируют друг друга.

Пока окружающая среда почти неизменна и впол­не устраивает человека, децентрализованное управ-

174

ление реализуется в полном объеме. Отдельные его подсистемы функционируют автономно и почти не взаимодействуют между собой. Но вот произошло резкое изменение состояния среды, грозящее челове­ку неприятными последствиями. Требуется как мож­но быстрее перевести все подсистемы в состояние «боевой готовности». И тогда срабатывает централи­зованное управление, переводящее организм в состо­яние, которое можно назвать ситуацией стресса. Основная особенность этой реакции — ее неспецифич­ность. Она осуществляется в любых опасных ситуа­циях и направлена на взаимодействие со всеми под­системами организма. В' кровь начинают выделяться гормоны, стимулирующие адаптационные реакции, повышается готовность организма к отдаче энергии, подпитываются мышцы и т. п. После этого либо на­ступает период адаптации, либо стрессовая ситуация исчезает. В наихудшем случае организм так долго стоит в готовности номер один, что наступает исто­щение, а, возможно, и гибель.

Таким образом, между децентрализованной и централизованной частями системы управления мы наблюдаем весьма интересное распределение функ­ций. В медленно меняющихся или неизменных сре­дах децентрализованная часть системы управления успешно справляется с адаптацией поведения к среде и достижением глобальных целей организма, а при резких изменениях среды организм включает некото­рую систему всеобщего назначения.

Специалисты по управлению интегральными робо­тами (в отличие от узкоспециализированных роботов. последние должны действовать в широком классе сред, точное описание которых сделать невозможно) сейчас находятся в весьма нелегком положении. С одной стороны, совершенно очевидно, что в роботе имеется немало подсистем, которые должны функци­онировать автономно или почти автономно, получая сигналы из центрального блока управления (напри­мер, подсистемы «глаз» и «рука», позволяющие ро­боту найти нужный предмет, взять его и совершить с ним какую-либо операцию, должны действовать параллельно и автономно, согласуя свои действия лишь не слишком частыми синхронизующими сигна­лами). С другой стороны, возникает проблема созда­ния неспецифических глобальных видов воздействий

175


от центрального блока, способного обеспечить целе­сообразное поведение робота. Общие законы такого поведения сформулировать очень трудно. Вспомним, например, три общих закона робототехники, предло­женные в свое время А. Азимовым. Эти законы на­ходятся в приоритетной связи. Первый из них самый приоритетный. Согласно ему робот никогда, ни при каких обстоятельствах не должен причинять вред человеку. Это закон всеобщего запрещения. И до­вольно легко себе представить, как можно организо­вать воздействие на подсистемы при опасности на­рушения этого закона. Второй закон А. Азимова говорит о том, что робот всегда должен стремиться к достижению поставленной перед ним задачи, если это не противоречит первому закону. А третий закон робототехники указывает роботу на необходимость принимать все меры к самосохранению, если это не противоречит предшествующим двум законам. Но два последних закона уже не могут быть неспеци­фичными в отношении сигналов, передаваемых под­системам робота. Требуется их спецификация по типам целей, которые ставятся перед роботом, и способам его самоохранительных действий.

Неспецифические сигналы централизованной части управляющей системы в наших многочисленных авто­матных и неавтоматных моделях поведения были представлены различными воздействиями среды на подсистемы. Такие механизмы, как введение общей кассы или случайных парных взаимодействий, игра­ют в этих моделях общерегулирующую роль. Напом­ним читателю, что, как мы говорили в § 4.4, целью коллектива может быть не только достижение целе­сообразного (или оптимального) поведения во внеш­ней среде, но и поиск этих регулирующих воздейст­вий, позволяющих подсистемам прийти к некоторому согласованному функционированию.

Для того чтобы еще раз подчеркнуть весьма важ­ную для нас мысль о вреде «вытаскивания» специ­фических функций в централизованную часть систе­мы управления, мы закончим этот параграф одной сценкой, которую можно было наблюдать на между­народной конференции по проблемам искусственного интеллекта и робототехники. Один из высокопостав­ленных представителей военно-морского флота США в ответ на жалобы докладчика о том, что весьма

176

трудно придумать небольшое число неспецифических законов целесообразного поведения для интегральных роботов, сказал, что он не видит в этом особой проблемы. И пояснил свою мысль следующим при­мером из жизни. Когда новички попадают на ко­рабль, то первое время они никак не могут приспо­собиться к новой среде, совершают массу ошибок и вместо помощи часто наносят непоправимый вред. Команда вынуждена тратить силы на то, чтобы сле­дить за новичками и оберегать их от беды. Однако всего этого можно избежать. Новичкам достаточно усвоить раз и навсегда, на весь их начальный пери­од адаптации на корабле, только один неспецифиче­ский закон: «Если ты видишь движущийся предмет, то отдай честь, если же предмет неподвижен, то по­крась его».

Это, конечно, анекдот, но мысль, высказанная в нем, точно отражает нашу проблему. Однако, к со­жалению, сегодня мы слишком мало знаем о том, как надо строить эти регулирующие процедуры в системах децентрализованного управления,


Г л а в а 6 ДИАЛЕКТИКА ПРОСТОГО И СЛОЖНОГО


«Дороги, которые мы выбираем, следует отличать от дорог, которые выбирают нас».

Феликс Кривин


§ 6.1. Синтезогенез и интеграция усилий

«Все эти создания обладали тройственной симмет­рией и напоминали формой греческую букву гамма с тремя остроконечными плечиками, соединяющимися в центральном утолщении. В падающем свете они казались черными, как уголь, в отраженном — пере­ливались синим и оливковым цветом, как брюшки некоторых земных насекомых. Наружные их стенки состояли из очень мелких пластин, напоминающих грани бриллианта, а внутри «мушки» содержали од­ну и ту же микроскопическую конструкцию. Ее эле­менты, в сотни раз меньшие, чем зернышки песка, образовывали что-то вроде автономной нервной си­стемы, в которой удалось различить две частично независимые друг от друга цепи.

Меньшая часть, занимающая внутренность плеч, представляла собой микроскопическую схему, заве­дующую движением «насекомого», нечто вроде уни­версального аккумулятора и одновременно трансфор­матора энергии. В зависимости от способа, каким сжимали кристаллы, они создавали то электрическое, то магнитное поле, то переменные силовые поля, ко­торые могли нагревать до относительно высокой тем­пературы центральную часть; тогда накопленное тепло излучалось наружу однонаправленно. Вызван­ное этим движение воздуха, .как реактивная струя, делало возможным движение в любом направлении. Отдельный кристаллик не столько летал, сколько подпрыгивал, и не был, во всяком случае во время лабораторных экспериментов, способен точно управ­лять своим полетом. Несколько же кристалликов, со­единяясь кончиками плеч друг с другом, образовы­вали систему с тем лучшими аэродинамическими показателями, чем больше их было.

173

Каждый кристаллик соединялся с тремя; кроме того, он мог соединяться концом плеча с централь­ной частью любого другого, что давало возможность образования многослойных комплексов. Соединения не обязательно требовали соприкосновения, кристал­ликам достаточно было сблизиться, чтобы возникшее магнитное поле удерживало все образование в рав­новесии. При определенном количестве насекомых система начинала проявлять многочисленные законо­мерности, могла в зависимости от того, как ее «драз­нили» внешними импульсами, менять направление движения, форму, вид, частоту внутренних пульса­ций; при определенных внешних условиях менялись знаки поля, и, вместо того, чтобы притягиваться, ме­таллические кристаллики отталкивались, переходили в состояние «индивидуальной россыпи».

Эта длинная цитата из повести Станислава Лема «Непобедимый» приведена нами не случайно. На планете «Регис-III» люди столкнулись с необычным явлением. Из примитивных кристалликов, обладаю­щих примитивным поведением, при определенных условиях возникал сверхорганизм— туча. И эта туча обладала почти неисчерпаемыми возможностями по адаптации своего поведения, ибо хранила в огром­ной памяти, складывающейся из памятей-песчинок отдельных кристаллов, необъятный запас знаний.

Однако столь ли уж необычен этот способ возник­новения сложного из простого? После того, что чи­татель прочитал в предшествующих главах, подобный путь организации сложного поведения должен ка­заться ему весьма привычным; Наблюдения за био­логическими организмами также не противоречат идее польского фантаста. Такое объединение более простых организмов в более сложный —один из пу­тей эволюции в органическом мире. К. М. Завад­ский, много лет занимавшийся проблемами эволюции, назвал такой путь синтезогенезом. Переход от одно­клеточных водорослей к многоклеточным был решаю­щим шагом на пути прогресса органического мира;

сообщество рабочих пчел в улье или рабочих мура­вьев в муравейнике—примеры того же типа.

Но простое скопление однородных подсистем или организмов—это еще не новая система или орга­низм. Множество рабочих пчел, встретившихся на цветущем лугу и относящихся к разным пчелиным

179









семьям,—это совсем не то, что множество рабочих пчел из одного улья. И совокупность пассажиров, оказавшихся одновременно в трамвае, резко отлича­ется от множества покупателей и продавцов на кол­хозном рынке.

В чем же состоит это отличие? В самом общем виде можно сказать, что некоторая совокупность элементов является единой системой, если эти эле­менты обладают потенциальным свойством образо­вывать статические или динамические структуры, необходимые для «выживания» элементов и всей их совокупности, т. е. обладают свойством устанавли­вать взаимодействие друг с другом для достижения локальных и глобальной целей. Это, конечно, не определение, а скорее рассуждение о чрезвычайно сложном вопросе. Исчерпывающий ответ на него — предмет специального исследования, выходящего да­леко за границы возможностей авторов. Но, как нам кажется, суть всех моделей коллективного поведения и взаимодействия в этом и состоит. Отметим еще, что когда речь идет о биологических совокупностях, то в реальных ситуациях эти потенциальные свойства проявляются лишь частично, а остальные — ждут своего часа. Хорошо- известны, например, опыты с некоторыми бактериями, которые всегда обитали в средах, где отсутствуют определенные виды углево­дов. При искусственной пересадке их в среды, где эти непривычные углеводы были единственной до­ступной для бактерий пищей, они начинали выраба­тывать фермент для их расщепления. Возможность этого была заложена в их генную структуру «на вся­кий случай» и реализовалась именно тогда, когда в этом возникла необходимость. Другой пример — огромные потенциальные возможности любого чело­века, подавляющее большинство которых никогда не проявляется у индивида, а возможно, и у человече­ского сообщества.

Таким образом, синтезогенез—это путь увеличе­ния числа потенциально возможных свойств, которые могут пригодиться системе при встрече с непривыч­ными для нее ситуациями и средами.

Рассмотрим простую модель, иллюстрирующую возможности синтезогенеза. На рис. 6.1 показан то­роидальный мир — совокупность клеток, размещен­ных на внешней поверхности тора (обычная сушка

1
80

или баранка дают превосходное представление о тороидальной форме). Предположим, что в клетках этого мира может находиться пища, которой могут питаться «организмы», обитающие в них. В качестве таких «организмов» будем рассматривать автоматы с линейной тактикой. Простейшая форма подобного автомата — автомат с од­ним действием, показанный на рис. 6.2, а. В состоянии 1 при получении сигнала штраф автомат «умирает» (на рисунке это отмечено крестиком). Действие, кото­рое может совершать ав­томат,— перемещение в не­котором фиксированном на­правлении на одну клетку тора. Обозначим четы­ре возможных направления перемещения, показанные на рис. 6.1, через А, Б, В, Г. Тогда простейшие ав­томаты будут делиться на четыре типа — будем обо­значать их теми же буквами. Допустим, что автоматы, находящиеся в одной клетке, могут объединяться. Если объединяются два автомата одного типа, то это приводит к увеличению длины лепестка (т. е. глуби­ны памяти для этого действия). При объединении же автоматов различного типа новый автомат имеет уже не один лепесток, а два. На рис. 6.2,6 показан ав­томат, который возник в результате объединения четырех автоматов, два из которых относятся к

181


типу А, а оставшиеся два — к типу В и Г. Для удобства будем обозначать такой автомат как А2ГВ.

В отличие от классического автомата с линейной тактикой наш автомат не может накапливать нака­зания безгранично и «умирает», когда число подряд действующих штрафов (пунктирные стрелки) превы­шает число состояний, имеющееся у автомата (для автомата, показанного на рис. 6.2, б, оно равно четы­рем). Кроме того, смена лепестков происходит равно­вероятно.

Сигналы наказания и поощрения формируются средой следующим образом. Если автомат в данной клетке съедает пищу, то он получает сигнал поощре­ния, в противном случае—сигнал наказания. После того как автомат съест пищу (на что в модели тре­буется один такт) и уйдет из клетки, то пища может в ней одномоментно восстановиться или клетка оста­нется пустой до того момента, когда по закону, ха­рактеризующему среду, пища снова восстановится.

Если в одну и ту же клетку попадает несколько автоматов, то они принудительно объединяются и образуют новый более сложный «организм».

Рассмотрим несколько ситуаций в эволюционном процессе на торе.

Н
а рис. 6.3 показано несколько простейших ситу­ация на некотором участке тороидальной поверхно­сти. Клетки, в которых имеется пища, отмечены точками. Предполагается, что пища, съеденная в клетках, полностью восстанавливается, как только автомат уйдет из нее. На рис. 6.3, а показаны два простейших автомата. Автомат Л съедает пищу в клетке, где он находится, и идет наверх. Но на этом кольце пищи нигде больше нет. В результате он по­гибает в клетке, помеченной крестиком. Иная судьба у автомата Г. Если пища имеется на всем кольце,

182

то этот автомат, двигаясь по замкнутому кольцу вправо, будет все время поддерживать свое сущест­вование. Он живет вечно, не беспокоясь ни о чем.

На рис. 6.2, б показана еще одна очень простая си­туация. Автоматы А и Г встречаются в клетке с пи­щей, объединяются и начинают движение. Каким оно будет? Это зависит от того, какое именно состояние окажется начальным. Ели это состояние, соответст­вующее состоянию 1 автомата А, то объединенный автомат сначала сделает шаг наверх. В этой клетке пищи нет и автомат получит наказание. Это заставит перейти его в состояние 1 бывшего автомата Г и сделать шаг на одну клетку вправо. Там пища есть. Съев ее, автомат сделает еще один шаг вправо. По­лучив наказание, он, как автомат А, сделает шаг вверх и получит пищу. Далее процесс будет повто­ряться циклически, если пища размещается на по­верхности тора регулярным образом. Автомат будет двигаться по «диагональной линии» и жить вечное Если бы начальным состоянием объединенного ав­томата было состояние 1 автомата Г, то движение было бы аналогичным. Пунктирные стрелки показы­вают оба возможных пути автомата АГ.

Усложнение структуры далеко не всегда приводит к улучшению функционирования. Это положение ил­люстрируется рис. 6.3, в. В клетке с пищей образует­ся автомат АБГ. Пусть начальным его состоянием является состояние 1 автомата Г. Сдвинувшись на одну клетку вправо и получив сигнал штраф, авто­мат переходит (путем равновероятного выбора) в состояние автомата Б. Он сдвигается вниз, но пищи там нет. Опять следует равновероятный переход, и автомат снова попадает в состояние автомата Г. Происходит сдвиг вправо. Но так как пищи в этой клетке нет, объединенный автомат погибает, исчер­пав все свои ресурсы. Если бы объединения не про­изошло, то при том распределении пищи, которое показано на рис. 6.3, в, все три простейших автомата могли бы жить вечно.

Наши забавные автоматы на тороидальной по­верхности можно исследовать с разных точек зрения. Но, к сожалению, это увело бы нас весьма далеко от основной канвы книги. Те, кому понравился этот мир, могут придумать много занимательных и интересных историй, полных драматизма и неожидан-


ных метаморфоз, которые могут развернуться на поверхности тора.

Для нас же важно отметить, что синтезогенез мо­жет приносить как пользу, так и вред, ибо иногда лучшее — враг хорошего.

Тем не менее путь синтеза, своеобразной полиме­ризации, часто встречается в эволюционирующих технических системах. Этот путь сыграл большую роль в создании мировой сети связи и транспортных сетей. При образовании комплексов резервированных устройств мы также сталкиваемся с явлением, подоб­ным синтезогенезу.

Выскажем еще раз одну весьма важную мысль, связанную с синтезогенезом. В процессе такого объ­единения возникает особое явление, сходное (чисто внешне) с полимеризацией в химии. Элементы, всту­пая в объединение и не меняясь по своей структуре, как бы приобретают новые качественные возможно­сти. И эти новые возможности зависят от механизма объединения. В гл. 4 мы уже столкнулись с этим явлением. Когда два автомата объединялись чисто механически (так, как объединяются автоматы в нашей модели эволюции на горе), число их состоя­ний растет, как п2, если каждый из автоматов имел п состояний. Когда же они объединяются за счет случайного парного взаимодействия, то это дает им возможность функционировать как автоматам, обла­дающим памятью глубины 2n. В гл. 5 мы также столкнулись с явлением «полимеризации». Автомат всего с восемью состояниями, объединившись в ше­ренгу стрелков, как бы приобретал возможность работы с памятью всей совокупности автоматов, ста­новился богаче по своим возможностям, не меняя своей структуры. Это явление кажется нам весьма любопытным.

Но, наряду с этим процессом в биологической и технической эволюции, идет и другой важный про­цесс, связанный с ростом неоднородности в организ­ме с появлением специализированных подсистем.

§ 6.2. Сегрегациогенез и его последствия

Термин сегрегациогенез, как и термин синтезоге­нез, принадлежит К. М. Завадскому. Его смысл сво­дится к тому, что в процессе развития биологических

особей идет не только их усложнение путем объеди-нения более простых организмов в более сложные, но и процесс дифференциации функций, выполняе­мых отдельными подсистемами, и ведущий затем к изменению структуры этих подсистем для лучшего осуществления своих специфических функций. Про­гресс требует отказа от универсальности, однотипно­сти. Универсальный элемент делает все одинаково плохо. Если пища на торе в примере, рассмотренном в предыдущем параграфе, всегда расположена так, что для обхода клеток с пищей нужен ход шахмат­ным конем, то имеет смысл, чтобы специфическая функция автомата позволяла бы ему прямо выпол­нять это движение в течение одного такта. Но если пища расположена иным образом, то подобное дейст­вие и не нужно.

Коллизия между универсальностью и специфич­ностью, между однородностью и разнородностью есть явление всеобщее, встречающееся всюду. Биоценозы и техноценозы также демонстрируют эту кол­лизию.

Количество рабочих пчел в улье может колебать­ся в довольно широких пределах, и они образуют подсистему, способную прожить самостоятельно, но самка пчелиного улья должна быть всегда одной единственной, и она быстро погибнет, если лишить ее рабочих пчел. Дифференциация здесь зашла уже весьма далеко, и отдельные подсистемы перестали уже быть способными к автономному функциониро­ванию вне той системы, в состав которой они входят.

Однако польза от появления подобных подсистем очевидна. Мы уже говорили в гл. 3 о пользе разно­родности в коллективе автоматов. Ранги рефлексии, уровни пессимизма—оптимизма были первыми по­казателями различий, намечавшихся в подсистемах, которые позволяли неоднородному коллективу более успешно решать стоящую перед ним задачу, чем од­нородному коллективу. Правда, любой из автоматов такого коллектива мог бы функционировать и в оди­ночку. Но это просто означает, что специализация еще не дошла до того рубежа, за которым самостоя­тельное существование отдельной подсистемы стано­вится невозможным. Однако специализация — непре­менный спутник прогресса, ибо только с ее помощью

185


можно уменьшать затраты времени на дости­жение тех или иных целей, стоящих перед ор­ганизмом.

В качестве иллюстрации сказанного рассмотрим, например, эволюцию в области ЭВМ. На первом эта­пе каждая вычислительная машина представляла собой некоторое единое и неделимое целое. Ее про­цессор, память, устройства обмена с внешним миром и управляющая система находились в столь жестких связях, что не могли не только функционировать, но и анализироваться отдельно друг от друга. Все про­цессы в ЭВМ протекали строго последовательно под контролем центрального устройства управления. Та­кую ЭВМ мы можем уподобить некоторой «клетке» в мире вычислительной техники.

Как же происходила эволюция ЭВМ в последую­щие годы? Один путь был связан с усложнением структуры ЭВМ, введением в ее состав новых подси­стем, обеспечивающих для нее возможность выполне­ния новых функций*) (например, графопостроите­лей, которые сделали возможным выводить из ЭВМ не только текстовую, но и графическую информацию, или появление в составе ЭВМ датчиков случайных чисел, позволяющих использовать при решении задач методы, опирающиеся на случайные распределения). Эти подсистемы, увеличивая сложность «клетки», не меняли принципиально условий ее существования. Но это усложнение вело к усложнению управляющей системы, на плечи которой падало все больше задач. И наступил момент, когда операционные системы ЭВМ (а именно они, как правило, выполняют роль центрального блока управления всеми процессами, протекающими в ЭВМ) стали самым узким местом. Появились грозные признаки того, что усложнение структуры ЭВМ приведет в тупик. Все чаще и чаще возникали ситуации, которые специалисты по опера­ционным системам называют дедлоками (ловуш­ками). Это такие состояния, когда требования раз­личных процессов, протекающих в машине, предъяв­ляют к операционной системе разноречивые требова­ния, и она не знает, что ей делать.

*) Эти подсистемы могут быть реализованы и в виде про­грамм.

186

Стало ясно, что при централизованном управле­нии дальнейшее усложнение структуры ЭВМ и улуч­шение ее функционирования уже невозможно.

П
ереход к комплексированию ЭВМ был тем сле­дующим шагом в эволюции, который надо было не­избежно сделать. Синтезогенез сработал. Вместо «одноклеточного» вычислительного устройства появи­лись «многоклеточные». Эти образования могли иметь различную структуру. На рис. 6.4 показаны некоторые типы структур комплексов ЭВМ. На рис. 6.4, а приведена структура с центральной ЭВМ 1, которая выполняет роль центрального управляю­щего устройства для ЭВМ 2, 3, 4, на рис. 6.4,6 мы видим смешанную структуру, а на рис. 6.4, в — де­централизованную, в которой все ЭВМ равноправны. Важно отметить, что даже в централизованной струк­туре возникает некоторая децентрализация. Цент­ральная ЭВМ не все время ведет процессы в подчи­ненных ей машинах. Она лишь инициирует в них начало некоторых процессов, синхронизует протекаю­щие процессы между собой и производит обмен ин­формацией между процессами. А в остальном маши­ны, входящие в систему, действуют самостоятельно. И это направление эволюции подтверждает правильность отказа от пути йогов, о котором говорилось в гл. 5.

187


Интересно отметить, что децентрализованная структура, показанная на рис. 6.4,в, демонстрирует возможность введения в структуру «организма» не­специфического централизованного управления. По­казанный на этом рисунке пунктиром блок синхро­низации К. может по специальной кольцевой шине передавать сигнал одновременно всем ЭВМ, образую­щим систему. Это может быть, например, сигнал пре­рывания всех вычислений для приема новой внешней информации, или для повторения вычислений, или для тестовой проверки. Но такой центральный уп­равляющий блок может и отсутствовать. Тогда син­хронизация работы децентрализованной системы бу­дет осуществляться по типу кольца стрелков, о чем было рассказано в гл. 5.

Кроме этого основного пути эволюции ЭВМ при­близительно в те же годы развивался и еще один путь — создание ЭВМ на основе однородных клеточ­ных структур, о которых мы также говорили в гл. 5. Этот путь был связан с идеей синтезогенеза в чистом виде. Предполагалось, что однородность и универ­сальность отдельных подсистем (автоматов, находя­щихся в клетках однородной структуры с потенци­ально однотипными связями между ними) позволят улучшить характеристики ЭВМ. Однако этого не произошло. Ибо сегрегациогенез оказался куда более эффективным в отношении этих характеристик.

И следующий шаг в эволюции ЭВМ — комплексирование не однотипных, а узкоспециализированных подсистем, причем для каждой из них четко опреде­лены те функции, которые она реализует. Сначала это привело к структурам того же типа, что и пока­занные на рис. 6.4. Отличие состояло лишь в том, что ЭВМ, входящие в систему, стали специализиро­ванными. Например, они могли быть специально со­зданы для обработки символьной информации, рабо­ты с матрицами, предварительной обработки и преобразования сигналов, поступающих от объекта управления, и т. п. Но при этом, как в автоматных моделях с рефлексией или уровнями пессимизма — оптимизма, все такие ЭВМ могли действовать и вне системы, автономно.

При дальнейшем сегрегациогенезе это свойство исчезло. Дифференциация коснулась даже той исход­ной ячейки — ЭВМ, которую мы уподобили клетке,

188

Е
е составляющие как бы обрели самостоятельность, и возникла структура, показанная на рис. 6.5. Про­цессоры, блоки памяти, блоки обмена и управляю­щие блоки как бы плавают в некоторой вычислитель­ной среде. Их объединение в структуру происходит динамически, управляющие блоки, получив задание, ищут исполнителей, свободных от работы, и органи­зуют процесс. На рис. 6.5 показан такой момент, когда управляющий блок У1 объединил для решения задачи два процессора П1 и П4, один блок памяти 32 и три блока обмена O1, О3 и О5. Одновременно управляющий блок У2 организовал другой процесс, объединив для этого в структуру процессор Пз, за­поминающее устройство 31 и обменное устройство O1. Задачи управляющие блоки получают из внешней среды. Из той же среды обменные устройства полу­чают исходную информацию. Результаты решения также возвращаются во внешнюю среду. После окон­чания решения задачи структуры «рассыпаются».

В этой структуре сегрегациогенез зашел настолько далеко, что отдельные подсистемы автономно не могут существовать. Лишь объединившись в струк­туру, где обязательно наличие одного управляющего блока и хотя бы одного обменного устройства, свя­занного с процессорами или запоминающими устрой­ствами, наш «организм» сможет функционировать. Способность образовывать структуры под задачи

189


демонстрирует его адаптационные возможности, а специализация отдельных подсистем позволяет реа­лизовать связанные с ними функции параллельно и максимально быстро.

А
нализируя прогресс в эволюции, К. М. Завад­ский предложил следующую наглядную схему, пока­занную на рис. 6.6. Есть как бы три возможности в эволюционном развитии биологических организмов. При первом из них арогенезе идет расширение адап­тационных возможностей организма. Он как бы рас­ширяет набор сред, в которых он будет выживать и давать потомство. Этот процесс может идти либо за счет синтезогенеза (как в нашей модели эволюции на тороидальной поверхности), либо за счет сегрега-циогенеза (как, например, в вычислительной среде, дающей возможность решать любые задачи, для ко­торых у системы хватает ресурсов). Заметим, что при наличии тех же ресурсов в рамках единой си­стемы типа, показанной на рис. 6.4, а, не удалось бы, например, организовать одновременное протека­ние двух процессов, показанных на рис. 6.5.

Если арогенез есть расширение адаптационных возможностей системы, то аллогенез есть смена неко­торых функций, реализуемых организмом, на новые, экологически равноценные. Другими словами, при аллогенезе происходит как бы смена одной экологи­ческой ниши на другую, более выгодную для выжи­ваемости организма. Такое явление можно наблю­дать не только в биологии, но и в технике. В эпоху клавишных вычислителей, предшествующую появле-

190

нию ЭВМ, они использовались в основном в научных расчетных бюро. ЭВМ вытеснили их оттуда, но они нашли свою экологическую нишу в бюро технико-экономических расчетов, которым невыгодно пользо­ваться услугами ЭВМ. Самолеты в свое время вы­теснили дирижабли, но похоже, что горячие поклон­ники дирижаблей нашли для них новую подходящую нишу в современном техноценозе, и в ближайшее время мы, возможно, вновь увидим в небе их непо­вторимые силуэты.

Наконец, телогенез — это как бы обратная сторо­на арогенеза. При телогенезе происходит очень глу­бокая адаптация к заданному состоянию экологиче­ской среды, которая достигается глубокой специали­зацией организма. Примеры телогенеза в технических системах очевидны. Практически все узкоспециализи­рованные системы могут рассматриваться с этой точ­ки зрения. Первобытное рубило, пригодное для всех случаев жизни, постепенно породило огромное количе­ство рубящих инструментов, многие из которых при­годны для выполнения очень конкретных работ, но не могут использоваться для чего-либо иного (например, колун, если только не использовать его обуха для за­бивания чего-либо).

Арогенез, аллогенез и телогенез — это не альтер­нативные пути эволюции. Они действуют согласован­но и одновременно. Доминирование любого из них может оказаться в развитии некоторого организма временным и преходящим. Но все эти пути направ­лены на единственную цель — улучшение адаптации .организма к данной среде и, как следствие этого, .увеличение его выживаемости в ней. И сказанное .вполне можно перенести на технические системы.. .