Конспект лекцій з дисципліни «Електротехнічні матеріали» для студентів з напрямку підготовки 050701 «Електротехніка та електротехнології»
Вид материала | Конспект |
- Робоча навчальна програма з дисципліни " Електропостачання " для студентів напряму, 511.24kb.
- Конспект лекцій з дисципліни «Процеси у діелектриках» для студентів з напрямку підготовки, 716.74kb.
- Робоча програма з навчальної дисципліни Електротехнічні матеріали для студентів напряму, 153.15kb.
- Кулько Тетяна Володимирівна, асистент кафедри, 229.49kb.
- Конспект лекцій до вивчення дисципліни «Будівельні матеріали», 1134.87kb.
- О. В. Харитонов конспект лекцій з дисципліни "земельне право україни" (для студентів, 1807.04kb.
- В. О. Кодін конспект лекцій з дисципліни «Основи реконструкції історичних міст» для, 703.58kb.
- Навчальна програма дисципліни "електротехніка" для напряму підготовки: 051001 «Метрологія, 284.54kb.
- Конспект лекцій з дисципліни „ Технологія туристської діяльності" для студентів 2 курсу, 2193.28kb.
- Конспект лекцій Хмельницький, 2005 Снозик О. В. Безпека життєдіяльності, 909.72kb.
Розділ 4. Провідникові матеріали.
Залежно від щільності струму в проводах втрати можуть сильно різнитися. Ясно, що при пропущенні певної потужності по лінії електропередач, наприклад для трифазної лінії Р = 3UaI, чим більше напруга мережі, тим більше потужність при тому ж значенні струму. Оскільки втрати визначаються струмом, а передана потужність добутком струму на напругу, то вигідніше переходити на більш високі класи напруги. Тому переходять на усе більш високі напруги, щоб відносно менша частка енергії губилася в проводах. Однак, як буде розказано в лекції по діелектричних характеристиках повітря, неможливо нескінченно підвищувати напруга.
Ясно також, що чим більше струм, тим більше потужність, причому залежність лінійна. Однак з ростом струму втрати енергії ростуть квадратично, тобто набагато сильніше, чим ріст переданої потужності. Збільшення площі перетину проведення послабляє проблему, але, з іншого боку, відбувається збільшення вартості будівництва лінії електропередач, тому що вартість кольорового металу проводів значна. Крім того, збільшення ваги проводів тягне збільшення маси опор, ускладнення монтажу й т.п. У результаті компромісу між збільшенням втрат і збільшенням вартості будівництва домовилися розраховувати проведення лінії на певну компромісну щільність струму, т.зв. економічну щільність струму. Згідно із Правилами пристрою електроустановок (ПУЕ), для міді вона становить 2,5 А/мм2 у випадку відкритих проводів при експлуатації 1000-3000 годин у рік, і знижується до 1.8 А/мм2 при експлуатації понад 5000 години в рік. Для алюмінію всі цифри приблизно у два рази нижче. Для кабелів усе визначається умовами тепловідводу через ізоляцію й оболонку кабелів, у ПУЕ припустима щільність струму нормується для кожного виду кабелів окремо, як правило, припустима щільність струму ще нижче.
4.1. Матеріали для проводів. Мідь, алюміній.
Основною характеристикою провідника є його питомий опір.
Природно, чому воно нижче, тем кращим провідником є той або інший матеріал. Із провідникових матеріалів з високої тепло- і електро- провідністю самим чудовим матеріалом для проводів було б срібло. Його питомий опір при кімнатній температурі становить приблизно 1.4×10-8 Ом×м, теплопровідність 418 Вт/(м×к). Однак цей матеріал занадто дорогий і рідкий, тому срібло використовують тільки для відповідальних контактів, тому що воно не тільки ідеальний провідник, але й не окислюється в процесі роботи, виходить, не погіршуються властивості контакту згодом. Відзначимо, що інші, більш звичні провідники, такі як мідь або алюміній окислюються киснем повітря, перетворюючись у непровідні окисли, погіршуючи або навіть запобігаючи омічний контакт. Для проводів саме їх і використовують, тому що по електропровідності їх можна поставити на 2-е й 3-е місце після срібла.
Властивості міді.
Мідь - м'який матеріал червонуватого відтінку.
Щільність при 20 °С 8.89 т/м3
Питомий опір при 20 °С 1.7 10-8 Ом×м.
Температурний коефіцієнт опору 4.3 10-3 1/ ДО
Застосування міді в енергетику досить широко - різні провідники, кабелі, шнури, шини, плавкі вставки, обмотки трансформаторів і котушок.
Властивості алюмінію.
Алюміній - м'який матеріал ясно-сірого кольору.
Щільність при 20 °С 2.7 т/м3
Питомий опір при 20 °С 2.8 10-8 Ом×м
Температурний коефіцієнт опору 4 10-3 1/ ДО
Зіставлення цих матеріалів по найбільш важливих для практики параметрах показує, що вони сильно відрізняються по щільності, теплоємності, міцності при розтяганні. Цікаво, що добуток теплоємності на щільність - мало відрізняється в цих матеріалів (~30%) Той факт, що в алюмінію мала механічна міцність змушує армувати алюмінієві проведення сталевими сердечниками. При цьому струм протікає по алюмінію (у сталі питомий опір зразковий в 5-10 разів вище, чим в алюмінію), а механічну міцність забезпечує сталь.
Для виготовлення проводів використовують алюміній, мідь, бронзу, а також комбінації цих елементів зі сталлю. При перетині до 10-15 мм2 звичайно використовують однодротові проведення, при більшому перетині - багато дротові, скручені проведення. Найбільш популярні проведення для ВЛ - сталеалюмінієві марки АС, наприклад АС 95/16 означає, що в поперечному перерізі 95 мм2 алюмінію й 16 мм2 стали.
4.2. Матеріали для контактів.
Провідники в місці контакту відрізняються від провідників в обсязі проводів декількома обставинами їх функціонування.
В - перших, неможливо зробити площа контакту такий же або більшої, ніж площа перетину проводів. Тому щільність струму й енерговиділення завжди вище в області контакту. По-друге, у місці контакту виникають мікропробої, а іноді й макропробої, що переходять у дугу (розмикання контактів вимикача) з локальним високим енерговиділенням, що приводить до деформації матеріалу в області контакту, локальному розплавлюванню й т.п. У третіх, у контакті виникає тертя при русі однієї частини контакту про іншу. У четвертих, контактні поверхні в розімкнутому стані не повинні взаємодіяти з навколишнім середовищем. Тому матеріали для контактів повинні мати особливі властивості. Вони повинні бути стійкими проти корозії, стійкими проти електричної ерозії й віднесення матеріалу, не зварюватися, мати високу зносостійкість на стирання, легко оброблятися, притиратися друг до друга, мати високу тепло й електропровідність, мати невисоку вартість.
Ідеальних матеріалів для контактів немає.
Для слабкострумових контактів звичайно використовують шляхетні або тугоплавкі метали: срібло, платину, палладій, золото, вольфрам і сплави на основі цих металів.
Срібло - недоліком срібла є утвір непровідних сірих плівок сульфіду срібла в результаті взаємодії з вологим сірководнем. Іншим недоліком є зварювання контактів через малу температуру плавлення срібла 960 ºС. Для поліпшення властивостей у срібло додають кадмій, мідь, золото, палладій або кремній.
Золото, саме по собі, рідко використовується через його м'якість, хоча воно абсолютно не окислиться. У місці контакту через м'якість металу легко утворюється ерозія, голки з металу, віднесення матеріалу. Для поліпшення властивостей у золото додають срібло ( до 50%), нікель і цирконій, платину. У результаті можна одержати неокислювані, тверді контакти зі слабкою ерозією.
Вольфрам є одним з розповсюджених контактних матеріалів. Він краще всіх протистоїть дуговим розрядам, практично не зварюється, ( завдяки високій температурі плавлення), не зношується ( завдяки високій твердості). Однак вольфрам не стійок проти корозії й окиснення, найкраще працює у вакуумі, в атмосфері водню або азоту. Крім того, для контактів з малим натисканням вольфрам не застосуємо.
Для потужнострумових контактів чисті метали не застосовні. Для них використовують т.зв. псевдосплави, одержувані методами порошкової металургії.
Псевдосплав - спечена суміш двох порошків, один з яких є більш тугоплавким. При цьому більш легкоплавкий компонент може розплавитися в процесі роботи, але наявність каркаса з тугоплавкого компонента втримує рідину за рахунок капілярних сил. Легкоплавкий компонент звичайно є більш тепло- і електропровідної. Використовують наступні псевдосплави:
срібло-окис кадмію, срібло-графить, срібло-нікель, срібло-вольфрам, мідь-графить, мідь-вольфрам.
Матеріали з малим температурним коефіцієнтом опору.
Вертаючись до температурного коефіцієнта для провідникових резистивних матеріалів, слід згадати про існування матеріалів із практично нульовим температурним коефіцієнтом опору. Це манганін, матеріал для точних прецизійних резисторів, і константан. У самій назві константану закладена інформація про сталість опору. Состав манганіну - марганець 11.5-13.5%, нікель - 2.5-3.5%, решта - мідь. Состав константану - нікель - 40%, марганець 1-2%, решта - мідь.
4.3. Металеві резистивні матеріали
З металевих матеріалів для резисторів найбільше поширення одержали матеріали на основі нікелю, хрому й заліза, т.н ніхроми, і родинні їм матеріали на основі заліза, хрому й алюмінію, т.зв. фехралі. У позначенні марки буква Х означає хром, буква Н-Нікель, буква Ю - алюміній. Цифра після кожної букви - процентний вміст цього елемента (масові відсотки). Залізо звичайне становить основу, його не позначають, а його зміст становить решта, тобто скільки потрібно, щоб доповнити до 100 %.
Застосування цих сплавів для нагрівачів і резисторів обумовлено двома головними обставинами. У перших, їх питомий опір зразковий в 40-60 раз перевищує питомий опір провідників - алюмінію й міді. Це пов'язане з порушенням структури матеріалу в сплаві декількох металів. У других, на поверхні цих матеріалів утворюється міцна, хімічно стійка плівка з окислів, що забезпечує високу жаростійкість матеріалів. Температурний коефіцієнт питомого опору ніхромів позитивний, тобто з ростом температури питомий опір збільшується. Це означає, що при використанні ніхрому як нагрівача потужність нагрівача в міру роботи, і, відповідно прогрівання самого резистивного матеріалу, буде зменшуватися. Важливо також, що температурні коефіцієнти розширення в плівки оксиду й у металу близькі, тому плівка не відшаровується при включенні - вимиканні нагрівачів.
Розглянемо конкретний приклад використання ніхрому для створення, наприклад, електронагрівника потужністю P = 1 кВт, на напругу U = 220 В.
Скористаємося відомим вираженням P = U2/R, звідси R = U2/P. Використовуючи формулу для перерахування R = l S, де - питомий опір, l - довжина провідника, S - площа перетину одержимо l / S =U2/(P). Оберемо сплав Х20Н80. У нього питомий опір = 1 мкОмм. Тоді l/s = 2202106/103 = 4.8107 1/м. Якщо обрати діаметр проводу 1 мм, площа складе 10-6/4 м2, а необхідна довжина приблизно 40 м. Ясно, що це занадто значна величина, тому можна обрати провод з ніхрому меншого діаметра, наприклад 0.5 мм. Для нього довжина нагрівача складе 10 м. Якщо звити в спіраль діаметром 10 мм, кількість витків складе 300, довжина спіралі при кроці 1 мм буде приблизно 30 см. Ясно, що з такої спіралі можна виконати побутовий нагрівач.
Таким чином, ми з вами навчилися розраховувати нагрівач у першім наближенні. Насправді при розрахунках ще слід урахувати, що за рахунок температурного коефіцієнта при нагріванні опір збільшиться й, отже потужність поменшується. Виходить, насправді потрібно обрати провідник трохи меншої довжини. Точний розрахунки досить складний, обмежимося оцінкою. Температурний коефіцієнт питомого опору для ніхромів становить приблизно 210-4 1/К. Це означає, що при нагріванні на 100 °К опір зміниться (збільшиться) на 2 %. У дротових нагрівачах резистивний матеріал нагрівається до 600-700 С. Це приводить до росту опору на 10-15%.
4.4. Принципи надпровідності.
Протікання струму в провідниках завжди пов'язане із втратами енергії, тобто з переходом енергії з електричного виду в тепловий вид. Цей перехід необоротний. Насправді, - і цей факт дивний, існує ряд провідників, у яких, при виконанні деяких умов, втрат енергії при протіканні струму немає!
Надпровідність, як і надплинність, були виявлені в експериментах при наднизьких температурах, поблизу абсолютного нуля температур. У міру наближення до абсолютного нуля коливання ґрати завмирають. Опір протіканню струму зменшується навіть згідно із класичною теорією, але до нуля при деякій критичній температурі Тс, воно зменшується тільки згідно із квантовими законами.
Однак ці явища характерні тільки для слабких магнітних полів. Виявляється, сильне магнітне поле може проникати в матеріал, більше того, воно руйнує саме надпровідність! Уводять поняття критичного поля Вс, яке руйнує надпровідник. Воно залежить від температури: максимально при температурі, близької до нуля, зникає при перехід до критичної температури Тс. Для чого нам важливо знати напруженість, (або індукцію) при якій зникає надпровідність? Справа в тому, що при протіканні струму по надпровідникові фізично створюється магнітне поле навколо провідника, яке повинне діяти на провідник.
Чим більше струм, тим більше поле. Таким чином, при деякій індукції (або напруженості) надпровідність пропадає, а отже, через провідник можна пропустити тільки струм, менше того, який створює критичну індукцію.
У такий спосіб для надпровідного матеріалу ми маємо два параметри: критична індукція магнітного поля Вс і критична температура Тс.
Температурну шкалу в криогенній області умовно ділять на кілька областей по температурах кипіння зріджених газів: гелієва (нижче 4.2°К), воднева 20.5°К, азотна 77°К, киснева 90°К, аміак (-33 С). Якби вдалося знайти матеріал, у якого температура кипіння була б поблизу або вище водневої - витрат на підтримку кабелю в робочому стані було б вдесятеро менше ніж для гелієвих температур. При перехід до азотних температур був би виграш ще на кілька порядків величини. Тому надпровідні матеріали, що працюють при гелієвих температурах, хоча були відкриті більш 80 років тому, дотепер не знайшли застосування в енергетиці.
Список рекомендованої літератури.
1. Богородицкий Н.П. и др. Електротехнические материалы: Учебник для електротехн. и энерг. спец. вузов / Н.П.Богородицкий, В.В.Пасынков, Б.М.Тареев. - 7-е изд., перераб. и доп. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1985. - 304 с
2. Справочник по електротехническим материалам: в 3-х т. / Под ред. Ю.В. Корицкого и др. - 3-е изд., перераб. - М.: Энергоатомиздат, Том 1. - 1986. - 368 с., Том 2. - 1987. - 464 с
3. Колесов С.Н, Колесов И.С. Електротехнические и конструкционные материлы. — Киев: Транспорт, 2003. 384 с.
4. Колесов С.Н. Материаловедение и технология конструкционных материалов: Учебник для вузов / С.Н. Колесов, И.С. Колесов. — 2-е изд., перераб. и доп. — М.: Высш. шк., 2007. — 535 с: ил. ISBN 978-5-06-005817-8
5. Тареев Б.М. Физика диелектрических материалов.-М.:Энергия, 1982.-320 с.
6. Борисова М.Э., Койков С.Н. Физика диелектриков. — Л.: Ленинград. ун-тет, 1979. 240 с.
7. Липштейн Р.А., Шахнович М.И. Трансформаторное масло.-3-е изд.-М.: Энергоатомиздат, 1983.-296 с.
Конспект лекцій з дисципліни: «Електротехнічні матеріали» для студентів з напрямку підготовки 6.050701 «Електротехніка та електротехнології» денної та заочної форми навчання.
Укладачі : Титюк Валерій Костянтинович, Пархоменко Роман Олександрович.
Реєстраційний № ______________
Підписано до друку _______________2010 р.
Формат А5
Обсяг 33 стор.
Тираж ______ прим.
Видавничий центр КТУ, вул. XXII партз’їзду, 11,
м. Кривий Ріг