Конспект лекцій з дисципліни «Електротехнічні матеріали» для студентів з напрямку підготовки 050701 «Електротехніка та електротехнології»

Вид материалаКонспект

Содержание


3.2. Загальні характеристики й застосування рідких діелектриків.
3.3. Використовувані й перспективні рідкі діелектрики.
3.3.2. Основні фізико-хімічні властивості трансформаторного масла.
3.3.3. Конденсаторне й кабельне масла.
3.3.4. Синтетичні діелектричні рідини.
Подобный материал:
1   2   3   4   5   6   7   8   9

3.2. Загальні характеристики й застосування рідких діелектриків.


З електрофізичної точки зору найбільш важливими характеристиками рідин є діелектрична проникність, електропровідність і електрична міцність.

Діелектрична проникність є дійсною характеристикою рідин і характеризується дипольним моментом і поляризуємістю молекул. Як приклад - у неполярного діелектрика гексана дипольний момент відсутній, поляризація має чисто електронний характер і, внаслідок цього, діелектрична проникність мала e ~ 2. Трансформаторне масло, будучи сумішшю речовин, має у своєму составі невелика кількість полярних молекул, що володіють дипольним моментом. Тому e зростає до ~ 2,2-2,4. Касторове масло має більше полярних молекул, отже більше e ~4,5. Етиловий спирт, гліцерин, вода є представниками полярних речовин, діелектрична проникність становить 24, 40, 81 відповідно.

Електропровідність рідин визначається іонізацією молекул, наявністю в рідині домішок особливого сорту: іонофорів і іоногенів, виникненням електрогідродинамічних течій, як уже розглядалося в другій лекції. Крім того, у рідинах виникають т.зв. подвійні електричні шари.

Подвійний електричний шар - утворення у рідині, на границі з іншими тілами (електродами, діелектриками), заряджених шарів з підвищеною електропровідністю, причому поверхню розділу і об'єм рідини набувають заряди різного знаку.

Утворення подвійних шарів актуально для технічних рідких діелектриків, наприклад для транспорту по трубах горючих діелектричних середовищ типу нафти, конденсату і т.д. Усунення подвійних шарів може бути здійснене тільки при ретельнім очищенні діелектричних рідин від, що іонізуються домішок.

Очищення діелектричних рідин може здійснюватися дистиляцією, в.т.ч. під вакуумом, частковою кристалізацією, адсорбцією, іонним обміном. При цьому, як правило, зменшується електропровідність, діелектричні втрати, зростає електрична міцність.

Основною домішкою, що дає провідність рідких діелектриків є вода, а основними домішками, що зменшують електричну міцність є мікрочастинки, мікропухирці й вода. Тому в практиці енергосистем для регенерації трансформаторного масла його фільтрують, дегазують вакуумуванням, осушують за допомогою пропущення через обсяг, заповнений адсорбентами (цеолітами, або силікагелем).

Цеоліти - тверді речовини природнього або штучного походження, що володіють великою питомою поверхнею за рахунок пор молекулярних розмірів і можливістю адсорбції домішок у цих порах. Силікагель - пористий адсорбент для поглинання вологи й полярних домішок. Він має меншу вибірковість стосовно різних домішок і меншою питомою поверхнею в порівнянні із цеолітами.

Електропровідність рідин найбільше радикально ( до 6 порядків величини в порівнянні з даними з довідників) зростає після застосування нового способу очищення - електродіалізу.

Електродіаліз - спосіб видалення іонів із проміжку за рахунок пропущення постійного струму при використанні іонообмінних мембран, провідність яких здійснюється тільки одним видом іонів: у катіонообмінній носії заряду - катіони, її розташовують у катода, в аніонообмінній носії заряду - аніони, її розташовують в анода.

За рахунок різних способів очищення рідин у дослідженнях вдавалося одержати електропровідність не вище електропровідності кращих твердих діелектриків, а саме до 10-19 См/м.

Електрична міцність - також, як і електропровідність, у значній мірі є технологічною характеристикою рідкого діелектрика й електродів, способів готування й експлуатації ізоляційного проміжку. На неї впливають не тільки ті домішки, які визначають електропровідність, але й форма й матеріал електродів, тривалість імпульсу, наявність пухирців. Є трохи найбільш загальних і очевидних приймань збільшення електричної міцності: дегазація рідини, пропущення через адсорбент, пропущення через фільтр із субмікронними розмірами пор. Деякі із цих способів використовуються в енергосистемах для осушки й регенерації масла.

3.3. Використовувані й перспективні рідкі діелектрики.

3.3.1. Трансформаторне масло.


Найпоширеніший в енергетиці рідкий діелектрик - це трансформаторне масло.

Трансформаторне масло, - очищена фракція нафти, одержувана при перегонці, що кипить при температурі від 300 °С до 400 °С. Залежно від походження нафти мають різні властивості й ці відмітні властивості вихідної сировини відбиваються на властивостях масла. Воно має складний вуглеводний склад із середньою вагою молекул 220-340 а.е., і містить наступні основні компоненти.

Табл.3.2. Типовий склад нафтового трансформаторного масла.

1. Парафіни

10-15%

2. Нафтени або циклопарафіни

60-70%

3. Ароматичні вуглеводні

15-20%

4.Асфальто-Смолисті речовини

1-2 %

5. Сірчані з'єднання

< 1%

6. Азотисті з'єднання

< 0.8%

7. Нафтенові кислоти

<0.02%

8. Антиокислювальна присадка (іонол)

0.2-0.5%

Кожний з компонентів масла відіграє певну роль при експлуатації. Парафіни й циклопарафіни забезпечують низьку електропровідність і високу електричну міцність. Ароматичні вуглеводні зменшують старіння масла й збільшують стійкість до часткових розрядів в обсязі масла. Асфальто-смолисті, сірчисті, азотисті з'єднання й нафтенові кислоти є домішками й не відіграють позитивної ролі. Асфальто - смолисті з'єднання відповідальні за виникнення осаду в маслі й за його колір. Сірчисті, азотисті з'єднання й нафтенові кислоти відповідальні за процеси корозії металів у трансформаторнім маслі.

Вуглеводні парафінового ряду, крім високої хімічної стійкості мають високу температуру спалаху й поруч інших позитивних якостей, але втрачають плинність (застигають) уже при кімнатній температурі й тому не допускається великого змісту парафінів. Більше того, нафти з їхнім більшим змістом (грозненська, суруханська) для готування масел не застосовуються.

Нафтенові вуглеводні менш стійкі, чому парафіни й легко окисляться. Типовою нафтеновою нафтою є доссорська нафта, з якої готується краще трансформаторне масло.

Ароматичні вуглеводні розділяються на вуглеводні симетричної будови (бензол, нафталін, антрацен) і ароматики з довгими бічними ланцюгами(толуол). Перші є одним з найбільше важко окиснюваних речовин. Ці ароматики є коштовною складовою частиною масла, тому що захищають його від окиснення. Другі досить легко з'єднуються з киснем, причому їх здатність до самоокиснення росте зі збільшенням числа й довжини бічних ланцюгів.

Першою операцією готування трансформаторного масла з нафти є фракційна перегонка під вакуумом. При перегонці нафта шляхом випару розділяється на ряд фракцій, кожна з яких містить близькі по температурі кипіння й подібні по властивостях вуглеводні. Спочатку від нафти відділяються найбільш легкі вуглеводні: бензин, лігроїн, гас; потім переганяються більш важкі фракції, так званий соляровий дистилят, з якого й готується масло. Перегонка не забезпечує однорідного состава масла, тому що в дистилят попадає цілий ряд суміжних фракцій. Крім того, у ньому є шкідливі домішки, що погіршують властивості масла, що й скорочують термін служби. Для одержання повноцінного продукту погон нафти зазнає очищенню від нафтових кислот, смол, сірки й ненасичених з'єднань. Ця операція називається рафінуванням. Дистилят протягом певного часу обробляється міцною сірчаною кислотою, яка окислить усі неграничні з'єднання й смоли й перетворює їх у нерозчинний кислий гудрон, який випадає в осад. Кислий гудрон, перебуваючи в контакті з маслом, руйнує основні вуглеводні. Тому для зменшення заподіюваного їм шкоди обробка кислотою проводиться при можливо більш низькій температурі й гудрон віддаляється з масла якомога швидше. Загальна кількість кислоти досягає 12-14% від ваги дистиляту. Для нейтралізації надлишку сірчаної кислоти, що залишився в маслі, і для видалення нафтенових кислот масло обробляється водяним розчином лугу (їдкого натру);, що утворювалися при цьому солі, мила й емульсії відділяються відстоюванням. незначна кількість, Що залишилася в маслі, солей і мил веде до його окиснення, тому після відстою масло повинне бути ретельно промите водою. Для повного видалення вологи промите масло зазнає сушінню продувкою повітря. Остаточне очищення масла проводиться обробкою його при температурі 70-80°С відбілюючою землею (адсорбент). Відбілюючі землі або глини видаляють останні залишки смол і кислот, і масло одержує свій приємний солом'яний колір.

3.3.2. Основні фізико-хімічні властивості трансформаторного масла.


З основних характеристик масла відзначимо, що воно пальне, біорозкладуване, практично не токсичне, що не порушує озоновий шар. Щільність масла звичайно перебуває в діапазоні (0.84-0.89)×103 кг/м3. В'язкість є одним з найважливіших властивостей масла. З позицій високої електричної міцності бажане мати масло більш високої в'язкості. Для того, щоб добре виконувати свої додаткові функції в трансформаторах ( як охолодне середовище) і вимикачах ( як середовище, де рухаються елементи привода), масло повинне мати невисоку в'язкість, а якщо ні, то трансформатори не будуть належним чином прохолоджуватися, а вимикачі - розривати електричну дугу у встановлене для них час.

Тому вибирають компромісне значення в'язкості для різних масел. Кінематична в'язкість для більшості масел при температурі 20 °С становить 28-30×10-6 м2/с.

Температурою застигання називається температура, при якій масло загущується настільки, що при нахиленні пробірки з охолодженим маслом під кутом 45° його рівень залишиться незмінним протягом 1 хв. У масляних вимикачах температура застигання має вирішальне значення. Свіже масло не повинне застигати при температурі -45°С; у південних районах країни дозволяється застосовувати масло з температурою застигання -35°С. Для експлуатаційних масел допускається ряд відступів від нормованої температури застигання залежно від того, чи перебуває масло в трансформаторі або вимикачі, працює в закритім приміщенні або ж на відкритім повітрі. Для спеціальних арктичних сортів масла температура застигання зменшується до -(60-65) °С, однак при цьому знижується й температура спалаху до 90-100°С.

Температурою спалаху називається температура масла, що нагрівається в тиглі, при якім його пари утворюють із повітрям суміш, що запалюється при піднесенні до неї полум'я. Спалах відбувається настільки швидко, що масло не встигає прогрітися й загорітися. Температура спалаху трансформаторного масла не повинна бути нижче 135°С. Якщо нагріти масло вище температури спалаху, то наступає такий момент, коли при піднесенні полум'я до масла воно загоряється.

Температура, при якій масло загоряється й горить не менш 5 сек., називається температурою запалення масла.

Температура, при якій відбувається загоряння в закритому тиглі, у присутності повітря, без піднесення полум'я, називається температурою самозапалювання. Для трансформаторного масла вона становить 350-400 °С.

З інших теплофізичних характеристик відзначимо порівняно невелику теплопровідність l від 0.09 до 0.14 Вт/(м×к), що зменшується залежно від температури. Теплоємність, навпаки, збільшується з ростом температури від 1.5 кДж/(кг×к) до 2.5 кДж/(кг×к). Коефіцієнт теплового розширення масла визначає вимоги до розмірів розширювального бака трансформатора й становить приблизно 6.5×10-4 1/К.

Питомий опір масла нормується при температурі 90°С и напруженості поля 0.5 МВ/м, і воно не повинне перевищувати 5×1010 Ом×м для будь-яких сортів масел. Відзначимо, що питомий опір, як і в'язкість, сильно падають із ростом температури ( більш ніж на порядок при зменшенні температури на 50 °С). Діелектрична проникність масла невелика й коливається в межах 2.1-2.4. Тангенс кута діелектричних втрат визначається наявністю домішок у маслі. У чистім маслі він не повинен перевищувати 2×10-2 при температурі 90°С и робочій частоті 50 Гц. В окисненім забрудненім і зволоженім маслі tgδ зростає й може досягати більш ніж 0.2. Електрична міцність масла визначається в стандартному розряднику з напівсферичними електродами діаметром 25.4 мм і міжелектродною відстанню 2.5 мм. Пробивна напруга повинна становити не менш 70 кВ, при цьому в розряднику електрична міцність масла буде не менш 280 кВ/см.

Існує великий розрив між терміном служби трансформатора й терміном служби масла. Трансформатор може працювати без ремонту 10-15 років, а масло вже через рік вимагає очищення, а через 4-5 років - регенерації. Заходами, що дозволяють продовжити строк експлуатації масла, є:

1) захист масла від зіткнення із зовнішнім повітрям шляхом установки розширників з фільтрами, що поглинають кисень і воду, а також витиснення з масла повітря;

2) зниження перегріву масла в умовах експлуатації;

3) регулярні очищення від води й шламу;

4) застосування для зниження кислотності безперервної фільтрації масла;

5) підвищення стабільності масла шляхом уведення антиокислювачів.

Антиокислювальна присадка спеціально вводиться в масло для запобігання його окиснення під дією локальних високих температур і реакцій із провідниковими й діелектричними матеріалами. Звичайно в якості присадки використовують іонол, рідше застосовуються й інші добавки.

Очищення, сушіння й регенерація масла. Очищенням масла називається така операція, за допомогою якої забруднене або окиснене масло приводиться в придатний для експлуатації стан. Після гарного очищення масло повинне повністю відновити свої початкові властивості, тобто повинне бути зовсім прозоро, не повинне містити кислот, опадів, води, вугілля й інших забруднень. Причини вилучення масла з експлуатації можуть бути двох пологів. Якщо масло під час експлуатації виявилося лише забрудненим різними постійними речовинами й не перетерпіло глибоких змін, то для його відновлення досить удатися до одному з описуваних нижче методів механічного очищення.

До механічних методів очищення ставляться:

1) відстоювання;

2) центрифугування;

3) фільтрування;

4) промивання.

Усі ці методи мають на меті вилучити з масла головним чином воду, механічні забруднення, нерозчинний шлаки й вугілля. Іншою причиною вилучення масла з експлуатації служить його старіння під дією високої температури, кисню повітря, потужних часткових розрядів. Таке масло перетерплює настільки глибокі зміни, що для відновлення його властивостей необхідно застосувати один з наступних методів хімічного очищення (регенерації):

1) сірчанокислотний метод;

2) лужноземельний метод;

3) обробку адсорбентами.

Очищення масла безпосередньо в трансформаторах і вимикачах може проводитися періодично або після аварії при різкім зниженні пробивної напруги, появи вугілля й інших ненормальних явищах або в результаті даних хроматографічного аналізу. Як правило, трансформатори й вимикачі в цих випадках виводяться з роботи й відключаються від мережі.

3.3.3. Конденсаторне й кабельне масла.


З родинних трансформаторному маслу по властивостях і застосуванню рідких діелектриків варто відзначити конденсаторні й кабельні масла.

Конденсаторні масла. Під цим терміном об'єднана група різних діелектриків, застосовувана для просочення паперово-масляної й паперово-плівкової ізоляції конденсаторів. Найпоширеніше конденсаторне масло за ДСТ 5775-68 роблять із трансформаторного масла шляхом більш глибокого очищення. Відрізняється від звичайних масел більшою прозорістю, меншим значенням tgd (більш, ніж у десять разів). Касторове масло рослинного походження, його отримують з насіння рицини. Основна область використання - просочення паперових конденсаторів для роботи в імпульсних умовах. Щільність касторового масла 0,95-0,97 т/м3, температура застигання від -10 °С до -18 °С. Його діелектрична проникливість при 20°С складає 4,0- 4,5, а при 90С - e = 3,5¸ 4,0;

Кабельні масла використовуються у виробництві силових електричних кабелів; Просочуючи паперову ізоляцію цих кабелів, вони підвищують її електричну міцність, а також сприяють відводу теплоти втрат. Кабельні масла бувають різних типів. Для просочення ізоляції силових кабелів на робочі напруги до 35 кВ у свинцевих або алюмінієвих оболонках ( кабелі із грузлим просоченням ) застосовується масло марки КМ-25 з кінематичною в'язкістю не менш 23 мм2/c при 100°С, температурою застигання не вище мінус 100С и температурою спалаху не нижче +220°С. Для збільшення в'язкості до цього масла додатково додається каніфоль або ж синтетичний загущувач.

У маслозаповнених кабелях використовуються менш грузлі масла. Так, масло марки МН-4 застосовується для маслозаповнених кабелів на напруги 110-220 кВ, у яких під час експлуатації за допомогою підживлюючих пристроїв підтримується надлишковий тиск 0,3 - 0,4 Мпа.

Для маслозаповнених кабелів високого тиску ( до 1,5 Мпа ) на напруги від 110-500 кВ, що прокладаються в сталевих трубах, застосовується особливо ретельно очищене масло марки З-200.

3.3.4. Синтетичні діелектричні рідини.


Другий тип рідких діелектриків - важкогорючі й негорючі рідини. Рідких діелектриків з такими властивостями досить багато. Найбільше поширення в енергетику й електротехніку одержали хлордіфеніли. У закордонній літературі вони називаються хлордіфенілами. Це речовини, що мають у своєму составі подвійне бензольне кільце, т.зв. ді(бі)фенільне кільце й приєднані до нього один або кілька атомів хлору. У Росії застосовуються діелектрики цієї групи у вигляді сумішей, в основному суміші пентахлордіфеніл із трихлордіфенілом. Комерційні назви деяких з них - “совол”, “совтол”

Хлордіфенили є гарними діелектриками. У них підвищена діелектрична проникність ε =5-6 у порівнянні із трансформаторним маслом через полярність зв'язку електронегативного хлору з діфенільним кільцем. Тангенс кута діелектричних втрат tgδ ненабагато вище, чим у масла, електрична міцність також висока. Застосування цих діелектриків було обумовлено як цими властивостями, так і, головним чином, їх негорючістю. Тому в пожежнонебезпечних умовах (шахти, хімічні виробництва й т.п.) використовували трансформатори й інші електричні апарати, заповнені хлордіфенильними діелектриками.

Однак у всього класу цих речовин є два дуже істотні недоліки – висока токсичність і сильний вплив на озоновий шар. Хоча токсичність є очевидним недоліком, але найбільший негативний вплив на застосування хлордіфенилів виявив другий його недолік.

У Росії й деяких інших країнах найбільш перспективними для застосування вважаються силікони (сілоксани) або кремнійорганичні рідини. Це величезний клас рідин з різними електро- і теплофізичними характеристиками. Добре очищені рідини мають ε =2.5 - 3.5, tgδ <10-3, ρ >1012 Ом·м. Звичайно у цих з'єднань підвищена, у порівнянні з маслом, температура спалаху. Деякі рідини на основі модифікованих поліметилетилсилоксанів мають температуру спалаху близько 300°С. До недоліків силоксанів належить те, що досліджені кремнійорганічні рідини не можуть забезпечити пожежобезпечність і, отже, не можуть повністю замінити хлордіфеніли. Крім того, вони в кілька разів дорожче трансформаторного масла.

Дуже цікавий клас фторорганических рідин. У закордонній літературі вони називаються перфторвуглеводні. По суті, це еквівалент звичайним органічним рідинам, тільки замість атома водню скрізь перебуває атом фтору. Наприклад, є аналоги органічним сполукам, таким як пентан С5H12 - перфторпентан С5F12, гексан С6H14- перфторгексан С6F14, триетил(пропіл,бутіл)амін – перфтортриетил (пропіл,бутіл) амін і т.п.

Існує навіть перфтортрансформаторне масло. (На відміну від справжнього трансформаторного масла перфтортрансформаторне масло при нормальних умовах є твердою речовиною й використовується в якості морозостійкого змащення). Наявність фтору на місці водню означає, що речовина повністю окиснилася, адже фтор є найдужчим окиснювачем, більш сильним, чому кисень. Тому фторвулецеві рідини інертні стосовно будь-яких впливів, в.т.ч. стабільні під дією електричного поля й температури. Оскільки вони ні із чим не взаємодіють, вони не розчиняють масла, гуму, воду й т.п. Високі характеристики фторвулецевих рідин важливі для застосувань. Заміна атома H на атом F приводить до нових властивостей і новим можливостям:

- негорючість;

- висока термічна й хімічна стабільність;

- інертність стосовно металів, твердих діелектриків і гумам;

- нетоксичність, відсутність кольору й заходу;

- можливість добору рідин з різними крапками кипіння й замерзання;

- низька розчинність води й висока розчинність газів;

- відсутність розчинності будь-яких нефторованих матеріалів;

- високий коефіцієнт температурного розширення.

Проведені дослідження поведінки деяких рідин при постійній і змінній напрузі показують, що по електрофізичних параметрах: питомий опір, tg δ, електрична міцність, вони значно перевершують аналогічні показники будь-яких інших рідин, включаючи мінеральні масла. Вони нетоксичні, неокислювані, мають низьку в'язкість, у тому рахунку у низькотемпературній області. Ряд рідин мають крапку замерзання -70°С и нижче. Основна перешкода до більш широкого використання - порівняно висока ціна. Ця перешкода може бути усунуте. У цей час є заділ по розробці нової, більш дешевої технології одержання перфторвуглеводнів.