Полимеризуемые стоматологические адгезивы и композиты. Обзор

Вид материалаРеферат
Армированные композиты и наночастицы
Модификация добавок Инициирующие системы
Подобный материал:
1   ...   5   6   7   8   9   10   11   12   13
Армированные композиты и наночастицы

Армирование (усиление) композитов часто реализуется путем введения волокон или нитевидных кристаллов. Армированные волокном пломбировочные композиты встречаются довольно редко. Частичное введение силанизированных измельченных стекло-волокон в композит приводит к увеличению модуля эластичности, но снижает прочность на сжатие. Более эффективным методом усиления композитов оказалось введение моно-кристаллических нитей нитрида кремния, значительно увеличивающих прочность на изгиб и разрыв [38, 39]. Главным недостатком материалов армированных монокристаллическими нитями является их непрозрачность из-за низкого светопропускания.

Использование нанонаполнителей в стоматологических материалах также достигло определенного успеха. Например, образуемые in situ слоеные силикатные нанонаполнители увеличивают прочность и жесткость акриловых нанокомпозитов [38]. Также предложены органо-полисилоксановые частицы диаметром 5-200 нм, модифицирующие плотность стоматологических материалов. Благодаря слабому взаимодействию между наночастицами увеличивается степень наполнения композита и достигается уменьшение полимеризационной усадки.

Нанонаполнители на основе двуокиси кремния не обладали рентгеноконтрастностью, как требует ISO 4049. Поэтому в состав композитов стали вводить наночастицы соединений редкоземельных металлов, например, фторид иттербия [38]. Рентгеноконтрастные наночастицы оксидов металлов синтезировали также пре-гидролизом этоксида тантала или пропоксида циркония в воде, с последующей переэтерификацией муравьиной кислотой [39]. Силанизированные наночастицы вводили в полимерную матрицу с получением прозрачного композита. Однако модификация не силикатных наночастиц метакрилированными силанами была менее эффективна. После отверждения нанонаполненного композита, его механические свойства оказались ниже, чем у не наполненной смолы. В связи с этим было предложено модифицировать наночастицы оксида тантала фосфатметакрилатом (рис. 38).




Рисунок 38. Наночастицы оксида тантала модифицированные фосфатметакрилатом.


Наночастицы имеют склонность к агломерированию. В этом случае для получения прозрачных материалов показатель преломления частиц должен быть подогнан под показатель преломления полимерной матрицы. Для этого используют золь-гель процесс, получая частицы смешанных оксидов с показателем преломления, зависящим от соотношения ионов металлов.

Исследования нанонаполнителей и нанопористости наполнителей для стоматологических композитов получили интересные результаты, но их свойства в настоящее время хуже или в лучшем случае эквивалентны существующим материалам из-за ингибирования отверждения и недостаточного проникания мономера в нанопоры. Хотя нанотехнология интересна и перспективна, очевидно, что нужно пройти еще долгий путь, прежде чем появятся приемлемые нанонаполненные стоматологические восстанавливающие материалы.

Модификация добавок
Инициирующие системы

Модификация инициирующих систем полимеризуемых восстановительных стоматологических материалов идет по пути применения новых инициаторов и ускорителей отверждения. Традиционным фотоинициатором в области видимого света является камфорохинон (соединение 18 на рис.11). С применением катионно-полимеризующихся мономеров, т.к. циклические, в состав восстановительных материалов были введены катионные фотоинициаторы, например соли иодония типа дифенилиодиниум- гексафторантимоната (структура 19 на рис.11).

Новые фотоинициаторы свободно-радикальной полимеризации мономеров в составе стоматологических композиций запатентовала недавно компания Bisco Inc. [86]. Заявлена композиция, состоящая из (а) 1-арил-2-алкил-1,2-этандиона и (б) твердого 1,2-диона в весовом соотношении (а):(б) = от 1:20 до 20:1. В качестве 1-арил-2-алкил-1,2-этандиона используется 1-фенил-1,2-пропандион (PPD) (рис. 39), а твердый 1,2-дион представляет собой камфорохинон.




Рисунок 39. Новый фотоинициатор свободно-радикальноиницируемых стоматологических материалов: 1-фенил-1,2-пропандион (PPD).


Американкая стоматологическая ассоциация запатентовала недавно одно-растворный адгезив, содержащий в качестве свободно-радикальных фотоиницаторов производные ацилфосфиноксидов, например, 2,4,6-триметилбензоилдифенилфосфиноксид (рис. 40) [87].




Рисунок 40. Фотоинициатор свободно-радикальноиницируемых стоматологических одно-растворных адгезивов: 2,4,6-триметилбензоилдифенилфосфиноксид (Lucerin 8728).


Разработка и применение ускорителей отверждения (сенсибилизаторов) происходит по двум направлениям: полимеризуемые ускорители и неполимеризуемые третичные ароматические амины. Традиционными ускорителями фото- и само- отверждения являются третичные ароматические амины типа диметил-пара-толуидина. Т.к. диметил-пара-толуидин - токсичный и сильно окрашивающий продукт с неприятным запахом, были предложены его производные с заместителями у атома азота и в бензольном кольце. Сегодня наибольшее распространение получили следующие ускорители этого типа: дигидроксиэтил-пара-толуидин, этил 4-диметиламинобензоат, 2-этилгексил-4-(N,N-диметиламино)бензоат, N,N-диаллил 4-диметиламино бензенсульфонамид, пара-толуолсульфинат лития.

В качестве полимеризуемых ускорителей долгое время использовались диметил- или диэтил- аминоэтилметакрилаты. Альтернативой этим мономерам является менее токсичный мономер не обладающий неприятным аминным запахом – морфолиноэтилметакрилат (структура 16 в табл. 6). Синтезирован также высокомолекулярный малотоксичный мономерный фотосенсибилизатор на основе аддукта глицидилметакрилата и морфолина (структура 17 в табл. 6). Очень интересен в этом плане сшивающий аминный ускоритель на основе триметакрилата триэтаноламина (рис. 41) [88].



Рисунок 41. Фотоактивный сшивающий мономер - триметакрилат триэтаноламина (ТМАТЕА).


Последний мономер настолько фотоактивен, что может легко полимеризоваться под воздействием видимого света без фотоинициатора. Данное свойство очень полезно при создании одно-упаковочных адгезивов последних поколений, не отличающихся стабильностью при хранении. Примерами других мономерных фотоинициаторов являются структуры 13 и 14 в табл. 6.

В качестве инициирующих систем химического отверждения, заменяющих системы перекись – амин, используются производные барбитуровой кислоты в сочетании с солями металлов типа ацетилацетоната меди. Недавно предложено использовать данные системы как фотосенсибилизаторы в комбинации с камфорхиноном [89].