Вопросы к экзаменам по лекциям
Вид материала | Лекция |
- Бодрийяр, «Система вещей» ? Вопросы к зачету = вопросы к контрольной работе 17 июня, 61.96kb.
- Проработать все вопросы по лекциям. Вопросы, выделенные курсивом на самостоятельную, 20.25kb.
- Контрольные вопросы к лекциям курса специфика национально-культурной коммуникации вопросы, 40.21kb.
- Л. Н. Гумилева отдел международных образовательных программ экзаменационные вопросы, 38.83kb.
- Вопросы к коллоквиуму по генетике Вопросы к коллоквиуму по генетике Сокращения: л лекции,, 41.18kb.
- Самостоятельная работа Тема Наименование темы, 34.24kb.
- Вопросы к государственным экзаменам по направлению: «Уголовное право, криминология,, 118.02kb.
- Вопросы по конституционному и административному праву к государственным экзаменам, 28.1kb.
- Вопросы к вступительным экзаменам в клиническую ординатуру по акушерству и гинекологии, 59.14kb.
- Данная программа предназначена для подготовки детей к выпускным школьным экзаменам, 343.26kb.
Характеристики
- ширина шины памяти, измеряется в битах — количество бит информации, передаваемой за такт. Важный параметр в производительности карты.
- количество видеопамяти, измеряется в мегабайтах — встроенная оперативная память на самой плате, значение показывает, какой объём информации может хранить графическая плата.
- частоты ядра и памяти — измеряются в мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию.
- техпроцесс — технология печати, указывается характерный размер, измеряемый в нанометрах (нм), современные карты выпускаются по 90-, 80- 65 или 55-нм нормам техпроцесса. Чем меньше данный параметр, тем больше элементов можно уместить на кристалле.
- текстурная и пиксельная скорость заполнения, измеряется в млн. пикселов в секунду, показывает количество выводимой в информации в единицу времени.
- выводы карты — раньше видеоадаптер имел всего один разъём VGA (15-контактный D-Sub), сейчас платы оснащают в дополнение выходом DVI—I или просто с двумя DVI-I для подключения двух ЖК-мониторов, и HDMI порт, их объединяют в один порт и используют переходники, а также композитными и S-Video видеовыходом и видеовходом (обозначается, как ViVo)
Поколения 3D-ускорителей
Поколения ускорителей в видеокартах можно считать по версии DirectX, которую они поддерживают. Различают следующие поколения:
- DirectX 7 - карта не поддерживает шейдеры, все картинки рисуются наложением текстур;
- DirectX 8 - поддержка пиксельных шейдеров версий 1.0, 1.1 и 1.2, в DX 8.1 ещё и версию 1.4, поддержка вершинных шейдеров версии 1.0;
- DirectX 9 - поддержка пиксельных шейдеров версий 2.0, 2.0a и 2.0b, 3.0;
- DirectX 10 - поддержка унифицированных шейдеров версии 4.0;
- DirectX 10.1 - поддержка унифицированных шейдеров версии 4.1.
Также поколения ускорителей в видеокартах можно считать по версии OpenGL , которую они поддерживают:
- Opengl 1.0
- Opengl 1.2
- Opengl 1.4
- Opengl 2.0
- Opengl 3.0(пока не поддерживается ни одной видеокартой)
16. Характеристики графических контроллеров. Блоки, входящие в состав графического процессора (структурные характеристики).
Архитектура графического процессора: функции
Реализм 3D-графики очень сильно зависит от производительности видеокарты. Чем больше блоков пиксельных шейдеров содержит процессор и чем выше частота, тем больше эффектов можно наложить на 3D-сцену, чтобы улучшить её визуальное восприятие.
Графический процессор содержит много различных функциональных блоков. По количеству некоторых компонентов можно оценить, насколько графический процессор мощный. Перед тем, как двигаться дальше, позвольте рассмотреть самые важные функциональные блоки.
Вершинные процессоры (блоки вершинных шейдеров)
Как и блоки пиксельных шейдеров, вершинные процессоры выполняют код программ-шейдеров, которые касаются вершин. Поскольку больший бюджет вершин позволяет создавать более сложные 3D-объекты, производительность вершинных процессоров очень важна в 3D-сценах со сложными объектами или с большим их количеством. Впрочем, блоки вершинных шейдеров всё же не так очевидно влияют на производительность, как пиксельные процессоры.
Пиксельные процессоры (блоки пиксельных шейдеров)
Пиксельный процессор - это компонент графического чипа, выделенный на обработку пиксельных программ-шейдеров. Эти процессоры выполняют вычисления, касающиеся только пикселей. Поскольку пиксели содержат информацию о цвете, пиксельные шейдеры позволяют достичь впечатляющих графических эффектов. Например, большинство эффектов воды, которые вы видели в играх, создаётся с помощью пиксельных шейдеров. Обычно число пиксельных процессоров используется для сравнения пиксельной производительности видеокарт. Если одна карта оснащена восемью блоками пиксельных шейдеров, а другая - 16 блоками, то вполне логично предположить, что видеокарта с 16 блоками будет быстрее обрабатывать сложные пиксельные программы. Также следует учитывать и тактовую частоту, но сегодня удвоение числа пиксельных процессоров эффективнее по энергопотреблению, чем удвоение частоты графического чипа.
Унифицированные шейдеры
Унифицированные (единые) шейдеры ещё не пришли в мир ПК, но грядущий стандарт DirectX 10 как раз опирается на подобную архитектуру. То есть структура кода вершинных, геометрических и пиксельных программ будет единая, хотя шейдеры будут выполнять разную работу. Новую спецификацию можно посмотреть в Xbox 360, где графический процессор был специально разработан ATi для Microsoft. Будет весьма интересно увидеть, какой потенциал несёт новый DirectX 10.
Блоки наложения текстур (Texture Mapping Unit, TMU)
Текстуры следует выбрать и отфильтровать. Эта работа выполняется блоками наложения текстур, которые работают совместно с блоками пиксельных и вершинных шейдеров. Работа TMU заключается в применении текстурных операций над пикселями. Число текстурных блоков в графическом процессоре часто используется для сравнения текстурной производительности видеокарт. Вполне разумно предположить, что видеокарта с большим числом TMU даст более высокую текстурную производительность.
Блоки растровых операций (Raster Operator Unit, ROP)
Процессоры растровых операций отвечают за запись пиксельных данных в память. Скорость, с которой выполняется эта операция, является скоростью заполнения (fill rate). В ранние дни 3D-ускорителей число ROP и скорость заполнения являлись очень важными характеристиками видеокарт. Сегодня работа ROP по-прежнему важна, но производительность видеокарты уже не упирается в эти блоки, как было раньше. Поэтому производительность (и число) ROP уже редко используется для оценки скорости видеокарты.
Конвейеры
Конвейеры используются для описания архитектуры видеокарт и дают вполне наглядное представление о производительности графического процессора.
Конвейер нельзя считать строгим техническим термином. В графическом процессоре используются разные конвейеры, которые выполняют отличающиеся друг от друга функции. Исторически под конвейером понимали пиксельный процессор, который был подключён к своему блоку наложения текстур (TMU). Например, у видеокарты Radeon 9700 используется восемь пиксельных процессоров, каждый из которых подключён к своему TMU, поэтому считают, что у карты восемь конвейеров.
Но современные процессоры описать числом конвейеров весьма сложно. По сравнению с предыдущими дизайнами, новые процессоры используют модульную, фрагментированную структуру. Новатором в этой сфере можно считать ATi, которая с линейкой видеокарт X1000 перешла на модульную структуру, что позволило достичь прироста производительности через внутреннюю оптимизацию. Некоторые блоки процессора используются больше, чем другие, и для повышения производительности графического процессора ATi постаралась найти компромисс между числом нужных блоков и площадью кристалла (её нельзя очень сильно увеличивать). В данной архитектуре термин "пиксельный конвейер" уже потерял своё значение, поскольку пиксельные процессоры уже не подключены к собственным блокам TMU. Например, у графического процессора ATi Radeon X1600 есть 12 блоков пиксельных шейдеров и всего четыре блока наложения текстур TMU. Поэтому нельзя говорить, что в архитектуре этого процессора есть 12 пиксельных конвейеров, как и говорить, что их всего четыре. Впрочем, по традиции пиксельные конвейеры всё ещё упоминают.
С учётом сказанных допущений, число пиксельных конвейеров в графическом процессоре часто используют для сравнения видеокарт (за исключением линейки ATi X1x00). Например, если взять видеокарты с 24 и 16 конвейерами, то вполне разумно предположить, что карта с 24 конвейерами будет быстрее.
17. Создание изображения (конвейер, рендеринг).
Рендеринг – процесс визуализации трехмерных объектов и сохранение изображения в фрейм-буфере. Рендеринг выполняется по многоступенчатому механизму, называемому конвейером рендеринга. Конвейер рендеринга может быть разделен на 3 стадии: тесселяция, геометрическая обработка и растеризация. Принцип конвейеризации является фундаментальным понятием, в соответствии с ним работают и 3D-ускорители, и 3D-API, – благодаря конвейеру можно рассмотреть работу любого из них. Если взять произвольный 3D-ускоритель, то он не будет ускорять все стадии конвейера, и даже более того, стадии могут лишь частично ускоряться им. Далее мы рассмотрим подробнее стадии конвейера в контексте работы 3D-ускорителей. Традиционно каждую стадию обозначают буквами.
Стадия "T". Тесселяция (триангуляция) – процесс разбиения поверхности объектов на полигоны (треугольники или четырехугольники). Эта стадия проводится полностью программно вне зависимости от технического уровня и цены 3D-аппаратуры. Тем не менее тесселятор (программный код, отвечающий за тесселяцию) должен учитывать особенности того или иного 3D-ускорителя, так как они могут иметь разные требования к полигонам-примитивам:
- произвольные треугольники
- треугольники с горизонтальной нижней или верхней гранью
- треугольник или четырехугольник с описанием уравнений ребер (бесконечные плоскости)
Также тесселятор должен учитывать, умеет ли работать с сетками (meshes) разных типов. Если 3D-программа разрабатывается на высокоуровневом 3D-API, например Direct3D RM или PowerRender, то ей не надо заботиться обо всех этих деталях, так как такой API имеет свой тесселятор.
Стадия "G". Геометрическая обработкаделится на несколько фаз, и может частично ускоряться 3D-ускорителем.
- трансформация (transformation) – преобразование координат (вращение, перенос и масштабирование всех объектов)
- отсечение (clipping), выполняемое до и после преобразования координат
- освещение (lighting) – определение цвета каждой вершины с учетом всех световых источников (решение уравнения освещенности)
- проецирование (projection) – преобразование координат в систему координат экрана
- setup – предварительная обработка потока вершин (перевод из плавающей точки в фиксированную точку данных о вершинах, а также сортировка вершин, отбрасывание задних граней, субпиксельная коррекция)
Наиболее часто люди путаются именно с геометрической обработкой. Это усугубляется тем, что сами производители путают терминологию. (Например 3Dlabs заявляет, что Glint Delta – геометрический сопроцессор, что вообще говоря неверно, Delta – это setup engine.) Большинство существующих 3D-ускорителей ускоряют только последнюю фазу – setup, при том делают это с разной степенью полноты. Говорят, что 3D-ускоритель имеет полный setup engine, если он может переводить в фиксированную точку все данные о вершине. В зависимости от типа примитивов, с которыми работает 3D-ускоритель, речь ведется о triangle setup или о planar setup.
Геометрический процессором называется ускоритель, который ускоряет всю стадию геометрической обработки, в том числе трансформацию и освещение. Реализация геометрического процессора довольно дорого, и как уже было сказано, он является объектом рекламных спекуляций. Определить реализован ли геометрический процессор довольно легко – надо выяснить, поддерживает ли 3D-ускоритель операции с матрицами. Без такой поддержки не может идти речь об ускорении фазы трансформации. Геометрическими процессорами являются например Glint Gamma и Pinolite.
Стадия "R". Растеризация – наиболее интенсивная операция, обычно реализуемая на аппаратном уровне. Растеризатор выполняет непосредственно рендеринг и является наиболее сложной ступенью конвейера. Если стадия геометрической обработки работает с вершинами, то растеризация включает операции, проводимые на пиксельном и суб-пиксельном уровне. Растеризация включает в себя удаление скрытых поверхностей, текстурирование, альфа-смешение, z-буферизация, затенение, антиалиасинг, dithering.
18. Устройства отображения информации. Мониторы на основе ЭЛТ. Четыре типа ЭЛТ.
Устройства отображения информации, дисплеи, устройства вывода данных из ЦВМ – обеспечивают представление информации (обычно результатов обработки вводимых данных) в форме, удобной для зрительного (визуального) восприятия человеком и принятия им решений (например, в виде цифро-буквенного текста, плана, таблицы, графика, схемы, чертежа и т.д.). Устройства отображения информации как оконечные устройства ЦВМ широко используются в системах передачи информации, в системах диагностики и машинного обучения, в научных исследованиях и при конструировании многих технических устройств, в автоматизированных системах управления и проектирования, сигнализации и контроля и т.п. системах «человек и машина». Устройства отображения информации подразделяют на индивидуальные и коллективные.
В качестве индивидуальных применяют устройства отображения информации, основным элементом которых служит электроннолучевая трубка (ЭЛТ).
Принцип действия мониторов на основе ЭЛТ заключается в том, что испускаемый электронной пушкой пучок электронов, попадая на экран, покрытый специальным веществом - люминофором, вызывает его свечение. Конструкция ЭЛТ монитора представляет собой стеклянную трубку, внутри которой находится вакуум. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором. В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и других. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Для создания изображения в ЭЛТ мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, то есть поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение на мониторе. Как правило, в цветном ЭЛТ мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах.
На пути пучка электронов, обычно находятся дополнительные электроды: модулятор, регулирующий интенсивность пучка электронов и связанную с ней яркость изображения; фокусирующий электрод, определяющий размер светового пятна, а также размещенные на основании ЭЛТ катушки отклоняющей системы, для изменения направления пучка. Любое текстовое или графическое изображение на экране монитора состоит из множества дискретных точек люминофора, называемых пикселами и представляющих собой минимальный элемент изображения - растра. Формирование растра в мониторе производится с помощью специальных сигналов, поступающих на отклоняющую систему. Под действием этих сигналов производится сканирование луча по поверхности экрана по зигзагообразной траектории от левого верхнего угла до правого нижнего. Ход луча по горизонтали осуществляется сигналом строчной (горизонтальной) развертки, а по вертикали — кадровой (вертикальной) развертки. Перевод луча из крайней правой точки строки в крайнюю левую точку следующей строки (обратный ход луча по горизонтали) и из крайней правой позиции последней строки экрана в крайнюю левую позицию первой строки (обратный ход луча по вертикали) происходит путем управления специальными сигналами обратного хода. Такие мониторы называются растровыми. Электронный луч в этом случае периодически сканирует экран, образуя на нем близко расположенные строки развертки. По мере движения луча по строкам видеосигнал, подаваемый на модулятор, изменяет яркость светового пятна и образует видимое на экране изображение. Разрешающая способность монитора определяется числом элементов изображения, которые он способен воспроизводить по горизонтали и вертикали, например, 640x480 или 1024x768 пикселов.
В отличие от телевизора, где видеосигнал, управляющий яркостью электронного пучка, является аналоговым, в мониторах PC используется как аналоговый, так и цифровой видеосигнал. В связи с этим мониторы для PC принято разделять на аналоговые и цифровые. Первыми устройствами отображения информации PC были цифровые мониторы. В цифровых мониторах управление осуществляется двоичными сигналами, которые имеют только два значения: логической 1 и логического О ("да"и "нет"). Уровню логической единицы соответствует напряжение около 5В, уровню логического нуля — не более 0,5 В. Поскольку такие же уровни и "О" используются в широко распространенной стандартной серии микросхем на основе транзисторно-транзисторной логики, или ТТЛ (Транзисторно-транзисторная логика), цифровые мониторы называют ТТЛ - мониторами. Первые ТТЛ-мониторы были монохромными, в последствие появились цветные. В монохромных цифровых мониторах точки на экране может быть только светлыми или темными, различаясь яркостью. Электронно-лучевая трубка монохромного монитора имеет только одну электронную пушку, она меньше цветных ЭЛТ, благодаря чему монохромные мониторы компактнее и легче других. Кроме того, монохромный монитор работает с более низким анодным напряжением, чем цветной (15 кВ против 21—25 кВ), поэтому потребляемая им мощность значительно ниже (30 Вт вместо 80—90 Вт у цветных).
В кинескопе цветного цифрового монитора содержатся три электронные пушки: для красного (Red) зеленого (Green) и синего (Blue) цветов с раздельным управлением, поэтому его называют RGB — монитором. Цифровые RGB-мониторы предназначены для подключения к видеокартам стандарта CGA и EGA. Объем палитры цветов каждого из мониторов определяется количеством двоичных сигналов, используемых для управления электронными пушками. Видеосигнал на монитор подается по четырем проводам: трем основным (R,G,B), и одному дополнительному (Intensity или Т). Сигнал I изменяет интенсивность трех пушек одновременно. В этом случае говорят о цветной модели 1К.ОВ, позволяющей отобразить 24=16 цветов.
На монитор EGA видеосигнал подается уже по шести проводам: сигналы трех основных (R, G, В) и трех дополнительных (r, g, b) цветов, позволяющие индивидуально регулировать интенсивность каждой пушки. Такая модель называется Rr, Gg, Bb. Она позволяет отобразить 26=64 оттенка цвета, однако ее возможности использованы в видеосистеме EGA лишь частично — из-за ограниченного объема видеопамяти для кодирования цвета пиксела используется не более 4 бит, поэтому одновременно можно отобразить только 16 цветов.
Цифровые RGB-мониторы поддерживают и монохромный режим работы с отображением до 16 градаций серого.
Аналоговые мониторы так же, как и цифровые, бывают цветными и монохромными, при этом цветной монитор может работать в монохромном режиме.
Такие мониторы работают с видеокартами стандарта VGA и выше. Они способны поддерживать разрешение более 640x480 пикселов.
Главная причина перехода к аналоговому видеосигналу состоит в ограниченности палитры цветов цифрового монитора. Аналоговый видеосигнал, регулирующий интенсивность пучка электронов, может принимать любое значение в диапазоне от 0 до 0,7 В. Поскольку этих значений бесконечно много, то палитра аналогового монитора не ограничена. Однако видеоадаптер может обеспечить только конечное количество градаций уровня видеосигнала, что в итоге ограничивает палитру всей видеосистемы в целом.
В зависимости от расположения электронных пушек и конструкции цветоделительной маски различают ЭЛТ четырех типов, используемых в современных мониторах:
ЭЛТ с теневой маской (Shadow mask) наиболее распространены в большинстве мониторов, производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia;
ЭЛТ с улучшенной теневой маской (EDP — Enhenced Dot Pitch)
ЭЛТ с щелевой маской (Slot mask) , в которой, люминофорные элементы расположены в вертикальных ячейках, а маска сделана из вертикальных линий. Вертикальные полосы разделены на ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. Применяется этот тип маски фирмами NEC и Panasonic.
ЭЛТ с апертурной решеткой из вертикальных линий. (Aperture grill) Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертикальных полос трех основных цветов. По этой технологии производятся трубки Sony и Mitsubishi.
Конструктивно теневая маска представляет собой металлическую пластину из специального материала — инвара с системой отверстий, соответствующих точкам люминофора, нанесенным на внутреннюю поверхность кинескопа. Температурная стабилизация формы теневой маски при ее бомбардировке электронным пучком обеспечивается малым значением коэффициента линейного расширения инвара. Апертурная решетка образована системой щелей, выполняющих ту же функцию, что и отверстия в теневой маске.
Оба типа трубок (с теневой маской и апертурной решеткой) имеют свои преимущества и области применения. Трубки с теневой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими краями. Поэтому мониторы с такими ЭЛТ рекомендуется использовать при интенсивной и длительной работе с текстами и мелкими элементами графики. Трубки с апертурной решеткой имеют более ажурную маску, она меньше заслоняет экран, и позволяет получить более яркое, контрастное изображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями. Минимальное расстояние между люминофорными элементами одинакового цвета в теневых масках называется dot pitch (или шаг точки) и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах (мм). Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изображения. Среднее расстояние между точками люминофора называется зерном. У различных моделей мониторов данный параметр имеет значение от 0,25 до 0,41 мм (у хороших мониторов — не более 0,28 мм). В ЭЛТ с апертурной решеткой среднее расстояние между полосами называется strip pitch (или шагом полосы) и измеряется в миллиметрах (мм). Чем меньше значение strip pitch, тем выше качество изображения на мониторе. Нельзя сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для примера, 0.25 мм strip pitch приблизительно эквивалентно 0.27 мм dot pitch.
Помимо электронно-лучевой трубки монитор содержит управляющую электронику, которая обрабатывает сигнал, поступающий напрямую от видеокарты PC. Эта электроника должна оптимизировать усиление сигнала и управлять работой электронных пушек. Выводимое на экране монитора изображение выглядит стабильным, хотя на самом деле таковым не является. Изображение на экране воспроизводится в результате процесса, в ходе которого свечение люминофорных элементов инициируется электронным лучом проходящим последовательно по строкам. Этот процесс происходит с высокой скоростью, поэтому кажется, что экран светится постоянно. В сетчатке глаза изображение хранится около 1/20 секунды. Это означает, что если электронный луч будет двигаться по экрану медленно, глаз воспринимает это как отдельную движущуюся яркую точку, но когда луч начинает двигаться со высокой скоростью, прочерчивая на экране строку 20 раз в секунду, глаз различит равномерную линию на экране. Если обеспечить последовательное сканирование лучом экрана по горизонтальным линиям сверху вниз за время меньшее 1/25 секунды, глаз воспримет равномерно освещенный экран с небольшим мерцанием. Движение самого луча происходит настолько быстро, что глаз не в состоянии его заметить. Считается, что мерцание становится практически незаметным при частоте повторения кадров (проходов луча по всем элемента изображения) примерно 75 в секунду.
Высвеченные пикселы экрана должны продолжать светиться в течение времени, которое необходимо электронному лучу, чтобы просканировать весь экран и вернуться снова для активизации данного пиксела при прорисовке уже следующего кадра. Следовательно, минимальное время послесвечения должно быть не меньше периода смены кадров изображения — 20 мс.