Физико-химические и технологические основы повышения эффективности комплексной переработки нефелинсодержащего сырья кислотными методами

Вид материалаАвтореферат

Содержание


04» декабря
Общая характеристика работы
Содержание работы
Основное содержание диссертации изложено
Подобный материал:
  1   2   3   4   5   6


На правах рукописи


МАТВЕЕВ Виктор Алексеевич


ФИЗИКО-ХИМИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ

ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ

НЕФЕЛИНСОДЕРЖАЩЕГО СЫРЬЯ КИСЛОТНЫМИ МЕТОДАМИ


Специальность 05.16.02 – Металлургия

черных, цветных и редких металлов


А в т о р е ф е р а т

диссертации на соискание ученой степени

доктора технических наук


Апатиты

2009



Работа выполнена в Учреждении Российской академии наук Институте химии и технологии редких элементов и минерального сырья им. И.В.Тананаева Кольского научного центра РАН


Официальные оппоненты:


доктор химических наук, профессор

Поляков Евгений Георгиевич


доктор технических наук, профессор

Бричкин Вячеслав Николаевич


доктор технических наук, профессор

Липин Вадим Аполлонович


Ведущая организация: открытое акционерное общество «Апатит»


Защита состоится « 04» декабря 2009 г. в 14 ч 30 мин на заседании диссертационного совета Д 002.105.01 при Институте химии и технологии редких элементов и минерального сырья им. И.В.Тананаева Кольского научного центра РАН по адресу: Мурманская область, г. Апатиты, Академгородок, д. 26а


С диссертацией можно ознакомиться в библиотеке Института химии и технологии редких элементов и минерального сырья им. И.В.Тананаева КНЦ РАН


Автореферат разослан «___» октября 2009 г.


Ученый секретарь

диссертационного совета, к.т.н. Громов П.Б.



ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Актуальность. Производство алюминия является одной из динамично развивающихся отраслей промышленности России. В связи с нехваткой месторождений высококачественных бокситов глиноземная промышленность с начала своего зарождения базируется также и на переработке щелочного алюмосиликатного сырья. В настоящее время около 40 % выпускаемого в стране глинозема получают из кольского нефелина и нефелиновых сиенитов месторождений Сибири по способу спекания с известняком. Имеются все предпосылки для существенного повышения доли глинозема, получаемого из этого сырья. Говоря о перспективах увеличения переработки нефелина, необходимо иметь в виду, что это будет способствовать не только расширению сырьевой базы глиноземной промышленности, но и решению такой важнейшей народнохозяйственной задачи, какой является повышение комплексности использования апатито-нефелиновых руд Кольского полуострова. Очевидно, что кардинально увеличить масштабы переработки нефелина на основе только одного технологического решения вряд ли возможно. Анализ существующего положения свидетельствует об актуальности создания новых высокоэффективных технологий переработки нефелина и особенно тех из них, которые могут быть реализованы непосредственно на Кольском полуострове. В наибольшей мере этим требованиям отвечают кислотные методы переработки нефелина, к преимуществам которых относятся:

- отсутствие сложных переделов в части подготовки сырья к переработке;

- снижение требований к качеству исходного сырья;

- уменьшение материальных потоков и энергетических затрат;

- расширение ассортимента производимой продукции;

- возможность регенерации всей или большей части используемой кислоты;

- снижение вредного воздействия на окружающую среду и человека.

Для решения перечисленных задач необходимо создание новых и усовершенствование имеющихся технологий на основе дальнейшего глубокого изучения физико-химических процессов кислотной переработки нефелина. Существенная роль в этом принадлежит разработке высокоинтенсивных методов кислотного разложения сырья, выделения соединений алюминия из кислых растворов и их переработки с получением оксидов-гидроксидов алюминия и сопутствующей продукции, регенерации затрачиваемых реагентов, повышения ассортимента и качества получаемых продуктов, снижения вредного воздействия на окружающую среду, улучшения условий труда.

Многочисленные исследования по теории и технологии комплексной переработки глиноземсодержащего сырья, в том числе нефелина, кислотными методами ранее уже нашли отражение в трудах отечественных и зарубежных ученых: А.А.Яковкина, Г.В.Лабутина, Н.И.Еремина, В.М.Сизякова, Ю.А.Лайнера, Д.М.Чижикова, В.С.Сажина, А.К.Запольского, Х.Р.Исматова, Г.З.Насырова, В.В.Власова, Ю.Е.Сутырина, С.Бретшнай-дера, Т.Р.Скотта, З.Цигенбальда и других. В то же время ряд вопросов нуждается в дальнейшем изучении, в частности, процессы кислотного разложения нефелина, выделения соединений алюминия из кислых растворов, обезжелезивания растворов и их переработки с получением оксидов-гидроксидов алюминия и других продуктов.

Цель работы. Разработка физико-химических основ и эффективных технологических решений комплексной переработки нефелинсодержащего сырья кислотными методами.

Работа выполнена в соответствии с планом бюджетных работ Учреждения Российской академии наук Института химии и технологии редких элементов и минерального сырья им. И.В.Тананаева Кольского научного центра РАН (тема 6-2001-2222  6-2007-2225), грантом РФФИ «Физико-химическое и химико-технологическое обоснование новых методов переработки нефелина и других щелочных алюмосиликатов Кольского полуострова» (проект № 07-03-97621), проектом № 3342 Международного научно-технического центра (г. Москва) «Разработка технологии получения и применения сорбентов радионуклидов на основе техногенных отходов обогащения апатито-нефелиновых руд».

Методы исследований. В работе были использованы современные физические, химические и физико-химические методы анализа. Экспериментальные исследования проводились в лабораторном, укрупненно-лабораторном, опытно-заводском, опытно-промышленном и промышленном масштабах. В ходе научно-исследовательских работ использовались математические методы планирования эксперимента, аналитической и графоаналитической обработки экспериментальных данных. Определение химического состава выполнялось методами атомно-эмиссионного, атомно-абсорбционного, спектрофотометрического анализов. Определение фазового состава выполнялось с использованием кристаллооптического, рентгенофазового, термогравиметрического, ИК-спектрометри-ческого методов анализа. Некоторые характеристики твердых материалов изучались с помощью методов оптической и электронной микроскопии, БЭТ (газовой десорбции), лазерной дифракции, а также весовой седиментации.

Научная новизна работы

1. Обоснована взаимосвязь кристаллохимического строения нефелина и характера его взаимодействия с кислотами. Получены новые данные по кинетике разложения нефелина и определен порядок реакции по серной кислоте. Исследованы основные физико-химические свойства аморфного кремнезема, полученного из нефелина.

2. Обоснована возможность полного гидролиза сернокислых солей алюминия в присутствии сульфитов аммония с образованием нерастворимых основных солей. Предложен механизм процесса, включающий образование промежуточного соединения – сульфат-сульфита алюминия, более склонного к гидролизу, чем исходная соль. Получены новые кинетические данные процесса. Установлено, что получаемые основные сернокислые соли алюминия по структуре и составу являются близкими аналогами природного минерала алунита.

3. Обоснована и экспериментально установлена возможность получения безводного сульфита аммония на основе продуктов термического разложения сульфата аммония в восстановительной среде.

4. Теоретически обоснована и экспериментально подтверждена возможность осуществления гидролиза солей Al, Ti и Zr, находящихся в состоянии кристаллогидратов, под действием газообразного аммиака по механизму депротонирования координированных вокруг атома металла молекул воды в соответствии с уравнением:

Н2О + NH3 = ОН- + NH4+.

5. Установлена специфичность структуры и состава образующихся в ходе твердофазного гидролиза гидратированных оксидов Al, Ti и Zr, обусловленная предотвращением полимеризации акваионов металлов с образованием соответствующих полиядерных гидроксокомплексов в отсутствие жидкой фазы.

6. Исследованы закономерности фазообразования при старении аморфного гидратированного оксида алюминия. Установлено, что процесс кристаллизации идет исключительно по пути формирования гидроксида алюминия со структурой псевдобемита, при этом наиболее полно и быстро  в условиях, являющихся типично «байеритными» (рН10.5).

7. Получены кинетические данные процесса денитрации азотнокислых солей алюминия, натрия и калия в различных температурных режимах.

8. Обоснована и экспериментально подтверждена возможность равномерного и стабильного распределения жидкого нефтепродукта в объеме кристаллизующегося нитрата аммония по механизму его адсорбции на поверхности формирующихся микрокристаллов.

9. Разработаны физико-химические основы комплексной переработки нефелинового концентрата с использованием ортофосфорной кислоты. Обоснованы и экспериментально подтверждены новые направления по использованию получаемых продуктов – фосфата алюминия и смеси фосфатов щелочных металлов с аморфным кремнеземом.

Практическая значимость работы

1. Разработан азотнокислотный способ переработки нефелинсодержащего сырья, в том числе отходов производства апатита, предусматривающий плазмохимическое разложение солей, с получением глинозема, соды, поташа, аморфного кремнезема и др. продуктов. Технология отработана по всем переделам на опытной установке, созданной в ОАО «Апатит». Полученные результаты послужили основой для выдачи исходных данных для выполнения ТЭР и проектирования опытно-промышленной установки мощностью 2 т/час по исходному сырью. Материалы по азотнокислотной переработке нефелина переданы в ОАО «Акрон» и «Северо-Западная Фосфорная Компания» для принятия решения о ее реализации.

2. Разработаны варианты сернокислотной переработки нефелина:

а) технология получения очищенного нефелинового коагулянта, алюмокалиевых квасцов и аморфного кремнезема. Технология проверена в опытно-промышленном масштабе. Выполнено ТЭО и спроектирован промышленный модуль мощностью 10-15 тыс. тонн коагулянта в год;

б) сернокислотно-сульфитный метод, предусматривающий выделение алюминия в виде основных солей, являющихся аналогами природных алунитов, и их дальнейшая переработка известными методами с получением глинозема, сульфата калия и др. продуктов. Технология отработана по всем переделам в укрупненно-лабораторном масштабе. Ее опытную проверку предполагается осуществить на одном из предприятий ОАО «ФосАгро»;

в) технология получения гидроксида алюминия псевдобемитной структуры, смеси сульфатов калия и аммония и аморфного кремнезема. Технология испытана в укрупнено-лабораторном масштабе совместно с ОАО «Аммофос». Решается вопрос о создании опытной установки.

г) способ получения алюмокалиевых квасцов из кремнеземсодержащих растворов. Технология разработана применительно к условиям ООО «Ловозерский ГОК». Проведены укрупненные испытания. Выполненные технико-экономические расчеты показали высокую эффективность получения алюмокалиевых квасцов при сернокислотной переработке отвальных нефелинсодержащих хвостов обогащения.

3. С использованием продуктов кислотной переработки нефелина разработаны рецептуры и способы получения новых эффективных промышленных взрывчатых веществ (ВВ). ВВ Гранулит АК и Акватол Т-20 ГК допущены Госгортехнадзором России к постоянному применению. Данная работа удостоена Премии Правительства РФ. Разработан способ получения водосодержащего ВВ, позволяющий значительно снизить содержание тротила без ухудшения взрывчатых характеристик. ВВ Акватол Т-8М успешно прошло приемочные испытания и рекомендовано к постоянному применению.

4. Разработан метод фосфорнокислотной переработки нефелина с получением алюмофосфатного продукта и смеси аморфного кремнезема с фосфатами аммония, калия и натрия. Алюмофосфатный продукт может быть использован в технологии алюмофосфатных связок и огнеупорных материалов. Проведенные в ЗАО «Экохиммаш» испытания показали, что кремнеземфосфатная смесь может использоваться в рецептурах порошковых огнетушащих составов типа Вексон.


Положения, выносимые на защиту

1. Осуществление гидролиза сернокислых солей алюминия в присутствии аммонийных солей сульфитного ряда обеспечивает течение процесса по пути образования промежуточного соединения – сульфата-сульфита алюминия, более склонного к гидролизу, чем исходная соль, что создает условия для практически полного перевода алюминия в осадок основной сернокислой соли типа алунита при относительно невысоких температурах.

2. Использование продуктов термического разложения сульфата аммония в восстановительной среде для получения сульфита аммония обеспечивает эффективное решение задачи регенерации используемого реагента, а также снижения выхода побочного продукта на единицу товарного глинозема.

3. Реализация процесса гидролиза солей алюминия, титана и циркония, находящихся в твердом состоянии (кристаллогидратов), под действием газообразного аммиака за счет предотвращения полимеризации акваионов металлов с образованием соответствующих полиядерных гидроксокомплексов обеспечивает формирование осадков гидратированных оксидов металлов в виде высокодисперсных соединений со стабильными физико-химическими свойствами и пониженным водосодержанием.

4. Совокупное воздействие физико-химических факторов (рН, температуры, продолжительности) на условия старения осадка гидратированного оксида алюминия обеспечивает осуществление процесса кристаллизации исключительно по пути формирования гидроксида алюминия со структурой псевдобемита.

5. Варьирование условий термической обработки смеси азотнокислых солей алюминия, натрия и калия обеспечивает получение стандартных полупродуктов глиноземного производства и регенерацию всей или большей части азотной кислоты.

6. Использование продуктов азотнокислотной переработки нефелинсодержащего сырья, обусловленное специфичностью их свойств, в качестве компонентов простейших взрывчатых веществ (ВВ) способствует увеличению масштабов переработки нефелина и расширению ассортимента промышленных ВВ. Массовая кристаллизация нитрата аммония при охлаждении горячих насыщенных растворов в присутствии жидкого нефтепродукта (минерального масла, дизельного топлива), сопровождаемая адсорбцией частиц нефтепродукта на поверхности образующихся кристаллов нитрата аммония, обеспечивает равномерное и физически стабильное распределение жидкого нефтепродукта в объеме формирующейся монолитной массы.

7. Комплексная переработка нефелинового концентрата с использованием разбавленной ортофосфорной кислоты позволяет получать новые продукты, что способствует расширению сырьевой базы производства алюмофосфатных связующих и огнетушащих порошков.

Апробация работы

Материалы диссертационной работы были представлены на различных научных форумах: Всесоюзных совещаниях «Применение химико-металлургических методов в схемах обогащения полезных ископаемых» (Караганда, 1987), «Комплексное освоение минеральных ресурсов Севера и Северо-Запада СССР (Европейская часть)» (Петрозаводск, 1989), «Кислотные методы комплексной переработки алюмосиликатного сырья» (Апатиты, 1990); Международной конференции «Научно-технический прогресс в металлургии легких металлов» (Ленинград, 1991); Международном симпозиуме «Проблемы комплексного использования руд» (Санкт-Петербург, 1994); Научно-практической конференции «Новейшие достижения в химии и технологии материалов» (Санкт-Петербург, 2002); VII Международной конференции «Экология и развитие Северо-Запада России» (Санкт-Петербург, 2002); Международной научной конференции «Высокие технологии» (Санкт-Петербург, 2004); Международной научно-практической конференции «Металлургия легких металлов. Проблемы и перспективы» (Москва, 2004); III Международной конференции «Проблемы рационального использования природного и техногенного сырья Баренцева региона в технологии строительных и технических материалов» (Петрозаводск, 2005); Международной научно-технической конференции «Наука и образование – 2005» (Мурманск, 2005); Международной конференции по химической технологии «Химическая технология. ХТ’07» (Санкт-Петербург, 2007); Международном совещании «Современные методы комплексной переработки руд и нетрадиционного минерального сырья (Плаксинские чтения)» (Апатиты, 2007); Всероссийской научной конференции «Научные основы химии и технологии переработки комплексного сырья и синтеза на его основе функциональных материалов» (Апатиты, 2008); Международной научно-практической конференции «Металлургия цветных металлов. Проблемы и перспективы» (Москва, 2009).

Публикации

По теме диссертации опубликовано 72 научных труда, в том числе 2 монографии, 32 статьи, 17 докладов и тезисов докладов, получено 14 патентов и 7 авторских свидетельств.

Структура и объем работы

Диссертация изложена на 299 страницах машинописного текста (в том числе 93 рис., 58 табл.) и включает в себя введение, шесть глав, выводы, список использованных источников, состоящий из 352 наименований, и приложения.


СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, сформулирована цель и определены основные решаемые задачи.

В первой главе дан краткий научно-технический анализ современного состояния и перспектив комплексной переработки нефелинсодержащего и другого алюмосиликатного сырья.

Во второй главе кратко охарактеризована сырьевая база нефелина и других щелочных алюмосиликатов.

В третьей главе, посвященной процессам при кислотной обработке нефелина, рассмотрено его кристаллохимическое строение, приведены результаты исследования кинетики взаимодействия нефелина с кислотами, изучены поведение кремнезема в растворах и влияние условий кислотной обработки на формирование хорошо фильтруемых кремнеземсодержащих осадков, дана характеристика получаемого аморфного диоксида кремния.

Нефелин относится к широко распространенному в природе классу щелочных алюмосиликатов, особенность строения которых заключается в их каркасной структуре. Основными структурными мотивами каркасных алюмосиликатов являются тетраэдры SiO4 и AlO4, соединяющиеся между собой общими вершинами. При этом четыре иона кислорода каждого тетраэдра принадлежат одновременно двум тетраэдрам. Изоморфное замещение ионов кремния в центре тетраэдров ионами алюминия становится возможным ввиду близости соотношения величин ионных радиусов кремния (0.39 Å) и кислорода (1.32 Å), а также алюминия (0.57 Å) и кислорода. В результате такой замены алюмокремнекислородная группировка приобретает отрицательный заряд, который компенсируется катионами, расположенными в структурных пустотах. В нефелине такими катионами являются Na+ и K+ при теоретическом соотношении 3:1. В нефелине половина ионов кремния замещена на ионы алюминия, и в идеальном виде кристаллическая структура нефелина представляет собой ажурную сетку из алюмокремнекислородных тетраэдров с шестиугольными крупными полостями, в которых располагаются ионы щелочных металлов. Поэтому при обработке нефелина кислотой не возникает препятствий для контакта последней как с кремнекислородными, так и с алюмокислородными тетраэдрами, в результате чего происходит полное разрушение каркасной структуры нефелина с переходом в раствор ионов алюминия, натрия, калия и кремния. Реакция взаимодействия нефелина с кислотой в общем виде может быть представлена уравнением:

(Na,K)2O·Al2O3·2SiO2 + 8H+ → 2(Na,K)+ + 2Al3+ + 2Si(OH)4. (1)

Определение динамики извлечения компонентов показало, что соотношение содержания в растворе Al2O3, Na2O, K2O и SiO2 в различные моменты времени весьма постоянно, т.е. скорость их растворения в кислоте практически одинакова. Поэтому о степени разложения нефелина можно судить по любому перешедшему в раствор компоненту.

Исследование кинетики разложения нефелина на примере взаимодействия последнего с 5%-ной серной кислотой показало, что процесс протекает в одну стадию и определяется условиями химической кинетики: значение энергии активации Е составило 48.56 кДж/моль. При этом установлено, что реакция имеет первый порядок по серной кислоте.

В реальных условиях кислотной обработки нефелина кремнезем, быстро переходящий в раствор, в результате трудноконтролируемой полимеризации претерпевает ряд последовательных превращений в соответствии со схемой:

   полимеризация агрегация

Si(OH)4  коллоидные частицы (золь)  сетка частиц

  поликонденсация

(гель, флокулы, агломераты).

Очевидно, что процесс агрегации необходимо направить по пути формирования возможно более плотных агрегатов с тем, чтобы их можно было эффективно отделить от раствора.

Установлено, что на форму образующихся осадков диоксида кремния, помимо концентрации кислоты, ее расхода и температуры, оказывают влияние, и притом определяющее, временной фактор (рис. 1), а также наличие поверхности раздела фаз (затравки кремнезема) (табл. 1).





Рисунок 1 – Зависимость показателей фильтрования от продолжительности дозирования нефелина в кислоту:

1 – скорость фильтрования; 2 – влажность осадка