Учебного курса по геометрии для 9-го класса
Вид материала | Пояснительная записка |
- Учебного курса биологии 11 класс Пояснительная записка Рабочая программа учебного курса, 248.23kb.
- Рабочая учебная программа по геометрии для 7 класса на 2011-2012 учебный год, 364.01kb.
- Рабочая программа учебного курса по геометрии, 10 класс календарно-тематическое планирование, 281.57kb.
- Примерные билеты по геометрии для 9 класса, 112.5kb.
- Учебного курса по биологии для 10 класса, 267.66kb.
- Рабочая программа учебного курса «Литература» для 8 класса, 487.2kb.
- Рабочая программа для учащихся 8 класса Составитель, 422.45kb.
- Рабочая программа по алгебре для 7 класса к учебнику Макарычев Ю. Н., Миндюк Н. Г.,, 490.15kb.
- Программа курса повышения квалификации учителей математики, 15.17kb.
- Рабочая программа учебного курса биологии «Животные» природоведение 7 класс, 1339.57kb.
Рабочая программа учебного курса
по геометрии для 9-го класса.
Пояснительная записка
Рабочая программа учебного курса геометрии для 9 класса составлена на основе программы для общеобразовательных учреждений (к учебному комплекту по геометрии для 7-9 классов авторы Л.С. Атанасян, В.Ф. Бутузов, С., В. Кадомцев и др.), составитель Бурмистрова Т.А.-М.: Просвещение, 2008.
Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по математике.
Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Программа направлена на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;
- развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.
В курсе геометрии 9-го класса формируется понятие вектора. Особое внимание уделяется выполнению операций над векторами в геометрической форме. Учащиеся дополняют знания о треугольниках сведениями о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.
Программой отводится на изучение геометрии по 2 урока в неделю, что составляет 68 часов в учебный год. Из них контрольных работ 4 часа, которые распределены по разделам следующим образом: «Метод координат» 1час, «Соотношение между сторонами и углами треугольника» 1 час, «Длина окружности и площадь круга» 1 час, «Движения» 1 час .
Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.
Количество часов по темам изменено в связи со сложностью тем.
Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут).
Для развития устойчивого интереса к учебному процессу, уроки геометрии интегрируются с информатикой. Доказательство геометрических фактов ведется в среде математической лаборатории Динамическая геометрия. Некоторые разделы геометрии закрепляются посредством тестов на ПК, которые разработали сами учащиеся. Для этого используется пакет прикладных программ Microsoft Office и УМК «Живая математика» – это компьютерная система моделирования, исследования и анализа широкого круга задач математики. Программа « Живая Математика» помогает конструировать интерактивные математические модели, давая начальные представления о понятиях формы тела, числах и т.п. Современный компьютерный чертеж можно деформировать и видоизменять, а результаты этих изменений допускают дальнейшую компьютерную обработку. «Живая Математика» помогает поставить мысленный эксперимент вида "что если?". Важно отметить, что в среде Живая математика учащиеся работают не с одним единственном объектом (например, треугольником), а с целым их семейством.
Требования к уровню подготовки учащихся.
В результате изучения курса геометрии 9-го класса учащиеся должны уметь:
- пользоваться геометрическим языком для описания предметов окружающего мира;
- распознавать геометрические фигуры, различать их взаимное расположение;
- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;
- вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
- решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
- решать простейшие планиметрические задачи в пространстве.
Содержание тем по геометрии 9 класса
Векторы. Метод координат. (20 часа)
Понятие вектора. Абсолютная величина и направление вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Коллинеарные векторы. Проекция на ось. Координаты вектора. Операции над векторами: умножение на число, сложение, разложение.
2. Соотношения между сторонами и углами треугольника. Скалярное
произведение векторов. ( 15 часов).
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Соотношение между сторонами и углами треугольника. Скалярное произведение. Угол между векторами.
- Длина окружности и площадь круга. ( 15 часов).
Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Вписанные и описанные окружности правильного многоугольника.
Длина окружности, число ; длина дуги. Площадь круга и площадь сектора.
4. Движение (10 часов).
Понятие движения. Примеры движений фигур. Симметрия фигур. Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Построение образов точек, отрезков, треугольников при симметриях, параллельном переносе, повороте.
- Об аксиомах планиметрии ( 1 час)
Беседа об аксиомах планиметрии.
- Повторение. Решение задач (7 часов)
Требования к уровню подготовки учащихся.
Главы 9, 10. Векторы. Метод координат.
В результате изучения данной главы учащиеся должны:
- знать: определение вектора, различать его начало и конец виды векторов, определять суммы и разности векторов, произведение вектора на число, что такое координаты вектора; определение средней линией трапеции;
- уметь: изображать и обозначать вектор, откладывать вектор, равный данному, находить координаты вектора по его координатам начала и конца, вычислять сумму и разность двух векторов по их координатам, строить сумму двух векторов, пользуясь правилами треугольника, параллелограмма, многоугольника; строить окружности и прямые заданные уравнениями.
Глава 11. Соотношения между сторонами и углами треугольника.
В результате изучения данной главы учащиеся должны:
- знать: определения косинуса синуса, тангенса для острого угла формулы, выражающие их связь; определения скалярного произведения векторов;
- уметь: воспроизводить доказательства теорем косинусов и синусов, применять в решении задач; находить скалярное произведение векторов в координатах, угол между векторами.
Глава 12. Длина окружности и площадь круга.
В результате изучения данной главы учащиеся должны:
- знать: определение правильного многоугольника, формулу длины окружности и ее дуги, площади сектора;
- уметь: вычислять стороны, площади и периметры правильных многоугольников, длину окружности и длину дуги; применять формулы площади круга, сектора при решении задач.
Глава 13. Движения.
В результате изучения данной главы учащиеся должны:
- знать: определения преобразования плоскости, движения плоскости, определять их виды;
- уметь: решать задачи, используя определения видов движения.
Рекомендации по оценке знаний, умений и навыков учащихся по математике.
Опираясь на эти рекомендации, учитель оценивает знания, умения и навыки учащихся с учетом их индивидуальных особенностей.
- Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
- Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.
- Среди погрешностей выделяются ошибки и недочеты.
Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.
К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.
- Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.
Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.
Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.
- Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.
- Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.
- Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения с учетом текущих отметок.
Оценка устных ответов учащихся.
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;
- отвечал самостоятельно без наводящих вопросов учителя.
Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.
- допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Отметка «3» ставится в следующих случаях:
- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).
- имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при знании теоретического материала выявлена недостаточная сформированность умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Оценка «1» ставится в случае, если:
- ученик обнаружил полное незнание и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.
Оценка письменных контрольных работ учащихся.
Отметка «5» ставится в следующих случаях:
- работа выполнена полностью.
- в логических рассуждениях и обоснованиях нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);
Отметка «4» ставится, если:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);
- допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);
Отметка «3» ставится, если:
- допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.
Отметка «1» ставится, если:
- работа показала полное отсутствие у учащегося обязательных знаний, умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учебная литература
1.. Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2003.
2. .Л. С. Атанасян; В. Ф. Бутузов и др. Геометрия; 9 класс. Рабочая тетрадь, - М.: Просвещение, 2011г.
3. .Н. Ф. Гаврилова Поурочные разработки по геометрии 9 класс.
– М.: ВАКО, 2005. – 320с. –( В помощь школьному учителю )
4..Артюнян Е. Б., Волович М. Б., Глазков Ю. А., Левитас Г. Г. Математические диктанты для 5-9 классов. – М.: Просвещение, 1991.
5. .Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия 7-9. – М.: Просвещение, 2008.
6. .Буланова Л. М., Дудницын Ю. П. Проверочные задания по математике для учащихся 5-8 и 10 классов. – М.: Просвещение, 1998.
7.Зив Б. Г., Мейлер В. М. Дидактические материалы по геометрии за 9 класс. – М.: Просвещение, 2005.
Учебник «Геометрия, 7–9», авторы Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. 2008 г.
Учебно-методическое обеспечение предмета.
Организация учебного процесса предполагает наличие минимального набора учебного оборудования, как для демонстрационных целей в классе, так и для индивидуального использования.
Минимальный набор демонстрационного учебного оборудования включает:
- демонстрационные плакаты, содержащие основные математические формулы, соотношения, законы, таблицы метрических мер,
- демонстрационные наборы плоских и пространственных геометрических фигур, в том числе разъемные, классные линейки, угольники, транспортир, циркуль;
В наборах для индивидуального использования имеется: линейка, угольник, транспортир, циркуль, наборы плоских и пространственных геометрических фигур.
Демонстрационные плакаты, для использования на уроках геометрии
в 9 классе.
№ п/п | Название плаката | Номер плаката. |
1 | Примеры преобразования фигур | № 5 |
2 | Формулы для радиусов вписанных и описанных окружностей | №1 |
3 | Длина окружности | № 4 |
4 | Примеры решения треугольников | № 3 |
5 | Движение | № 11 |
6 | Правильные многоугольники | № 8 |
7 | Формулы для радиусов вписанных и описанных окружностей правильных многоугольников. | № 6 |
8 | Поворот | № 10 |
9 | Параллельный перенос | № 7 |
10 | Теорема синусов | № 2 |
11 | Теорема косинусов | № 9 |