Ответы к билетам по курсу «Информатика и икт» для проведения экзамена в 9 классе (2010-2011 учебный год) Билет №1

Вид материалаДокументы

Содержание


Билет N19.
Матричные принтеры
Струйные принтеры
Лазерные принтеры
Растровые графические редакторы.
Панели инструментов графических редакторов.
Выделяющие инструменты.
Инструменты редактирования рисунка
Этапы развития вычислительной техники. Основные технические характеристики современного персонального компьютера.
Первое поколение ЭВМ.
Второе поколение
Третье поколение
Четвертое поколение
Подобный материал:
1   2   3   4   5   6   7   8   9   10

Билет N19.
  1. Компьютерная графика. Аппаратные средства (монитор, видеокарта, видеоадаптер, сканер и др.) Программные средства (растровые и векторные графические редакторы, средства деловой графики, программы анимации и др.).

Аппаратные средства. Устройства вывода информации.

Монитор.

Монитор является универсальным устройством вывода информации и подключается к видеокарте, установленной в компьютере.

Изображение в компьютерном формате (в виде последовательностей нулей и единиц) хранится в видеопамяти, размещенной на видеокарте. Изображение на экране монитора формируется путем считывания содержимого видеопамяти и отображения его на экран.
Частота считывания изображения влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит обычно с частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия изображения пользователем компьютера (человек не замечает мерцание изображения). Для сравнения можно напомнить, что частота смены кадров в кино составляет 24 кадра в секунду.

В настольных компьютерах обычно используются мониторы на электронно-лучевой трубке (ЭЛТ). Изображение на экране монитора создается пучком электронов, испускаемых электронной пушкой. Этот пучок электронов разгоняется высоким электрическим напряжением (десятки киловольт) и падает на внутреннюю поверхность экрана, покрытую люминофором (веществом, светящимся под воздействием пучка электронов).

 Система управления пучком заставляет пробегать его построчно весь экран (создает растр), а также регулирует его интенсивность (соответственно яркость свечения точки люминофора). Пользователь видит изображение на экране монитора, так как люминофор излучает световые лучи в видимой части спектра. Качество изображения тем выше, чем меньше размер точки изображения (точки люминофора), в высокачественных мониторах размер точки составляет 0,22 мм.

Однако монитор является также источником высокого статического электрического потенциала, электромагнитного и рентгеновского излучений, которые могут оказывать неблагоприятное воздействие на здоровье человека. Современные мониторы практически безопасны, так как соответствуют жестким санитарно-гигиеническим требованиям, зафиксированным в международном стандарте безопасности ТСО'99.

В портативных и карманных компьютерах применяют плоские мониторы на жидких кристаллах (ЖК). В последнее время такие мониторы стали использоваться и в настольных компьютерах.

 ЖК-мониторы сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул. Молекулы жидких кристаллов под воздействием электрического напряжения могут изменять свою ориентацию и вследствие этого изменять свойства светового луча, проходящего сквозь них.

Преимущество ЖК-мониторов перед мониторами на ЭЛТ состоит в отсутствии вредных для человека электромагнитных излучений и компактности.

Мониторы могут иметь различный размер экрана. Размер диагонали экрана измеряется в дюймах (1 дюйм = 2,54 см) и обычно составляет 15, 17, 19 и более дюймов.

Принтеры.

Принтеры предназначены для вывода на бумагу (создания «твердой копии») числовой, текстовой и графической информации. По своему принципу действия принтеры делятся на матричные, струйные и лазерные.

Матричные принтеры  — это принтеры ударного действия. Печатающая головка матричного принтера состоит из вертикального столбца маленьких стержней (обычно 9 или 24), которые под воздействием магнитного поля «выталкиваются» из головки и ударяют по бумаге (через красящую ленту). Перемещаясь, печатающая головка оставляет на бумаге строку символов.

Недостатки матричных принтеров состоят в том, что они печатают медленно, производят много шума и качество печати оставляет желать лучшего (соответствует примерно качеству пишущей машинки)

Струйные принтеры

В последние годы широкое распространение получили черно-белые и цветные струйные принтеры. В них используется чернильная печатающая головка, которая под давлением выбрасывает чернила из ряда мельчайших отверстий на бумагу. Перемещаясь вдоль бумаги, печатающая головка оставляет строку символов или полоску изображения.

 Струйные принтеры могут печатать достаточно быстро (до нескольких страниц в минуту) и производят мало шума. Качество печати (в том числе и цветной) определяется разрешающей способностью струйных принтеров, которая может достигать фотографического качества 2400 dpi. Это означает, что полоска изображения по горизонтали длиной в 1 дюйм формируется из 2400 точек (чернильных капель).

Лазерные принтеры обеспечивают практически бесшумную печать. Высокую скорость печати (до 30 страниц в минуту) лазерные принтеры достигают за счет постраничной печати, при которой страница печатается сразу целиком.

Высокое типографское качество печати лазерных принтеров обеспечивается за счет высокой разрешающей способности, которая может достигать 1200 dpi и более.

Плоттер. Для вывода сложных и широкоформатных графических объектов (плакатов, чертежей, электрических и электронных схем и пр.) используются специальные устройства вывода — плоттеры.

Принцип действия плоттера такой же, как и струйного принтера.

Устройства ввода информации

Сенсорный экран

Сенсорный, или тактильный, экран представляет собой поверхность, которая покрыта специальным слоем. Прикосновение к определенному месту экрана обеспечивает выбор задания, которое должно быть выполнено компьютером, или команды в экранном меню. 

Сенсорный экран позволяет также перемещать объекты. Он удобен в использовании, особенно когда необходим быстрый доступ к информации. Такие устройства ввода можно увидеть в банковских компьютерах, аэропортах, а также в военной сфере и промышленности.

Световое перо

 Световое перо похоже на обычный карандаш, на кончике которого имеется специальное устройство — светочувствительный элемент.

Соприкосновение пера с экраном замыкает фотоэлектрическую цепь и определяет место ввода или коррекции данных. Если перемещать по экрану такое перо, можно рисовать или писать на экране, как на листе бумаги.

Световое перо используется для ввода информации в самых маленьких персональных компьютерах — в карманных микрокомпьютерах. Оно также применяется в различных системах проектирования и дизайна.

Графический планшет, или дигитайзер

Графический планшет, или дигитайзер, используется для создания либо копирования рисунков или фотографий. Он позволяет создавать рисунки так же, как на листе бумаги. Изображение преобразуется в цифровую форму, отсюда название устройства (от англ. digit — цифра).

С помощью специальной ручки можно чертить, рисовать схемы, добавлять заметки и подписи к электронным документам. Качество графических планшетов характеризуется разрешающей способностью, которая измеряется в lpi (линиях на дюйм) и способностью реагировать на силу нажатия пера.

В хороших планшетах разрешающая способность достигает 2048 lpi (перемещение пера по поверхности планшета на 1 дюйм соответствует перемещению на 2048 точек на экране монитора), а количество воспринимаемых градаций нажатий на перо составляет 1024.

Условия создания изображения приближены к реальным, достаточно специальным пером или пальцем сделать рисунок на специальной поверхности. Результат работы дигитайзера воспроизводится на экране монитора и в случае необходимости может быть распечатан на принтере. Дигитайзерами обычно пользуются архитекторы, дизайнеры.

Сканер
Большое распространение в наше время прибрели устройства сканирования изображений, таких как тексты или рисунки. Термин «сканирование» происходит от английского глагола to scan, что означает «пристально всматриваться».

Сканер предназначен для ввода в компьютер графической или текстовой информации с листа бумаги, со страницы журнала или книги. Для работы сканера необходимо программное обеспечение, которое создает и сохраняет в памяти электронную копию изображения. Все разнообразие подобных программ можно подразделить на два класса — для работы с графическим изображением и для распознавания текста.

Сканируемое изображение освещается белым светом (черно-белые сканеры) или тремя цветами (красным, зеленым и синим). Отраженный свет проецируется на линейку фотоэлементов, которая движется, последовательно считывает изображение и преобразует его в компьютерный формат. В отсканированном изображении количество различаемых цветов может достигать десятков миллиардов.

Сканеры различаются по следующим параметрам:

 глубина распознавания цвета: черно-белые, с градацией серого, цветные;

оптическое разрешение, или точность сканирования, измеряется в точках на дюйм и определяет количество точек, которые сканер различает на каждом дюйме;

К важным характеристикам сканера также относятся время сканирования и максимальный размер сканируемого документа.
Сканеры находят широкое применение в издательской деятельности, системах проектирования, анимации. Эти устройства незаменимы при создании презентаций, докладов, рекламных материалов высокого качества.

Разрешающая способность сканеров составляет 600 dpi и выше, то есть на полоске изображения длиной 1 дюйм сканер может распознать 600 и более точек.

Цифровые камеры и ТВ-тюнеры

Последние годы все большее распространение получают цифровые камеры (видеокамеры и фотоаппараты). Цифровые камеры позволяют получать видеоизображение и фотоснимки непосредственно в цифровом (компьютерном) формате.

Цифровые видеокамеры могут быть подключены к компьютеру, что позволяет сохранять видеозаписи в компьютерном формате.

Для передачи «живого» видео по компьютерным сетям используются недорогие web-камеры, разрешающая способность которых обычно не превышает 640x480 точек.
Цифровые фотоаппараты позволяют получать высокачественные фотографии с разрешением до 2272x1704 точек (всего до 3,9 млн пикселей). Для хранения фотографий используются модули flash-памяти или жесткие диски очень маленького размера. Запись изображений на жесткий диск компьютера может осуществляться путем подключения камеры к компьютеру.

Если установить в компьютер специальную плату (ТВ-тюнер) и подключить к ее входу телевизионную антенну, то появляется возможность просматривать телевизионные передачи непосредственно на компьютере.

Программные средства

Для обработки изображений на компьютере используются специальные программы — графические редакторы. Графический редактор — это программа создания, редактирования и просмотра графических изображений. Графические редакторы можно разделить на две категории: растровые и векторные.

Растровые графические редакторы. Растровые графические редакторы являются наилучшим средством обработки фотографий и рисунков, поскольку растровые изображения обеспечивают высокую точность передачи градаций цветов и полутонов. Среди растровых графических редакторов есть простые, например стандартное приложение Paint, и мощные профессиональные графические системы, например Adobe Photoshop.

Растровое изображение хранится с помощью точек различного цвета (пикселей), которые образуют строки и столбцы. Любой пиксель имеет фиксированное положение и цвет. Хранение каждого пикселя требует некоторого количества бит информации, которое зависит от количества цветов в изображении.

Качество растрового изображения определяется размером изображения (числом пикселей по горизонтали и вертикали) и количества цветов, которые могут принимать пиксели.

Растровые изображения очень чувствительны к масштабированию (увеличению или уменьшению). Когда растровое изображение уменьшается, несколько соседних точек превращаются в одну, поэтому теряется разборчивость мелких деталей изображения. При укрупнении изображения увеличивается размер каждой точки и появляется ступенчатый эффект, который виден невооруженным глазом.

Векторные графические редакторы. Векторные графические изображения являются оптимальным средством для хранения высокоточных графических объектов (чертежи, схемы и т. д.). для которых имеет значение наличие четких и ясных контуров. С векторной графикой вы сталкиваетесь, когда работаете с системами компьютерного черчения и автоматизированного проектирования, с программами обработки трехмерной графики.

К векторным графическим редакторам относятся графический редактор, встроенный в текстовый редактор Word. Среди профессиональных векторных графических систем наиболее распространены CorelDRAW и Adobe Illustrator.

Векторные изображения формируются из объектов (точка, линия, окружность и т. д.), которые хранятся в памяти компьютера в виде графических примитивов и описывающих их математических формул.

Например, графический примитив точка задается своими координатами (X, Y), линия — координатами начала (XI, У1) и конца (Х2, Y2), окружность — координатами центра (X, Y) и радиусом (К), прямоугольник — величиной сторон и координатами левого верхнего угла (Xl, Y1) и правого нижнего угла (Х2, Y2) и т. д. Для каждого примитива назначается также цвет.

Достоинством векторной графики является то, что файлы, хранящие векторные графические изображения, имеют сравнительно небольшой объем. Важно также, что векторные графические изображения могут быть увеличены или уменьшены без потери качества.

Панели инструментов графических редакторов. Графические редакторы имеют набор инструментов для создания или рисования простейших графических объектов: прямой линии, кривой, прямоугольника, эллипса, многоугольника и т. д. После выбора объекта на панели инструментов его можно нарисовать в любом месте окна редактора. 

Выделяющие инструменты. В графических редакторах над элементами изображения возможны различные операции: копирование, перемещение, удаление, поворот, изменение размеров и т. д. Чтобы выполнить какую-либо операцию над объектом, его сначала необходимо выделить.

Для выделения объектов в растровом графическом редакторе обычно имеются два инструмента: выделение прямоугольной области и выделение произвольной области. Процедура выделения аналогична процедуре рисования.

Выделение объектов в векторном редакторе осуществляется с помощью инструмента выделение объекта (на панели инструментов изображается стрелкой). Для выделения объекта достаточно выбрать инструмент выделения и щелкнуть по любому объекту на рисунке.


Инструменты редактирования рисунка позволяют вносить в рисунок изменения: стирать его части, изменять цвета и т. д. Для стирания изображения в растровых графических редакторах используется инструмент Ластик, который убирает фрагменты изображения (пиксели), при этом размер Ластика можно менять.

В векторных редакторах редактирование изображения возможно только путем удаления объектов, входящих в изображение, целиком. Для этого сначала необходимо выделить объект, а затем выполнить операцию Вырезать.

Операцию изменения цвета можно осуществить с помощью меню Палитра, содержащего набор цветов, используемых при создании или рисовании объектов.

Текстовые инструменты позволяют добавлять в рисунок текст и форматировать его.

В растровых редакторах инструментом Надпись (буква А на панели инструментов) создаются текстовые области на рисунках. Установив курсор в любом месте текстовой области, можно ввести текст. Форматирование текста производится с помощью панели Атрибуты текста.

В векторных редакторах тоже можно создавать текстовые области для ввода и форматирования текста. Кроме того, надписи к рисункам вводятся посредством так называемых выносок различных форм.

Масштабирующие инструменты в растровых графических редакторах дают возможность увеличивать или уменьшать масштаб представления объекта на экране, не влияя при этом на его реальные размеры. Обычно такой инструмент называется Лупа.
В векторных графических редакторах легко изменять реальные размеры объекта с помощью мыши.

Форматы графических файлов

Форматы графических файлов определяют способ хранения информации в файле (растровый или векторный), а также форму хранения информации (используемый алгоритм сжатия).

Сжатие применяется для растровых графических файлов, так как они имеют обычно достаточно большой объем. Сжатие графических файлов отличается от их архивации с помощью программ архиваторов. тем, что алгоритм сжатия включается в формат графического файла.

Некоторые форматы графических файлов являются универсальными, так как могут быть обработаны большинством графических редакторов. Некоторые программы обработки изображений используют оригинальные форматы, которые распознают только самой создающей программой.

Рассмотрим некоторые форматы графических файлов:

BMP – универсальный формат растровой графики в windows.

GIF – формат растровых графических файлов для различных ОС. Используется для размещения графических изображений в Интернете.

JPEG - формат растровых графических файлов, который использует эффективных алгоритм сжатия (с потерями). Используется для размещения графических изображений в Интернете.

WMF – универсальных формат векторных графических файлов для windows-приложений.

CDR – оригинальный формат векторных графических файлов, используется в системе обработки изображений CorelDraw.

  1. Этапы развития вычислительной техники. Основные технические характеристики современного персонального компьютера.

Основными этапами развития вычислительной техники являются:
  1. Ручной – с 50-го тысячелетия до н. э.;
  2. Механический – с середины XVII века;
  3. Электромеханический – с девяностых годов XIX века;
  4. Электронный – с сороковых годов XX века.

Ручной – с 50-го тысячелетия до н. э.

В V веке до нашей эры в Греции и Египте получил распространение абак. Абак – это греческое слово, которое переводится как счетная доска. Первоначально это была доска, посыпанная тонким слоем песка или порошка из голубой глины. На ней заостренными палочками можно было писать буквы и цифры. Впоследствии абак был усовершенствован и вычисления на нем производились перемещением костей и камешков по желобам доски, а сами доски начали изготовлять из бронзы, камня, мрамора, слоновой кости. Подобные счетные инструменты распространялись по всему миру. Например, китайский вариант абака назывался суан-пан.

Механический – с середины XVII века

Первым механическим вычислительным устройством можно считать простые счеты, которые можно считать "потомком" абака. В России они появились на рубеже XVI–XVII веков. И до сих пор в нашей стране счеты можно увидеть не только в музеях.

В начале XVII века шотландский математик Джон Непер ввел понятие логарифма, опубликовал таблицы логарифмов. Затем в течение двух веков развивались вычислительные инструменты, основанные на использовании этой математической функции. Логарифмы позволяют свести трудоемкие арифметические операции – умножение и деление – к более простым – сложению и вычитанию. В результате появилась логарифмическая линейка. Этот инструмент до недавнего времени был вычислительным средством инженеров. И лишь последние годы его вытеснили электронные калькуляторы.

Уже во втором тысячелетии блестящий изобретатель и живописец Леонардо да Винчи (1452−1519) разрабатывает основы механической счетной машины, арифмометра.

Если в счетах десятичное число кодируется положением костяшек на спицах, то в арифмометре (механическом вычислителе) число кодируется положением (поворотом) диска с 10 зубцами. С помощью таких связанных друг с другом дисков можно построить суммирующее устройство.

1623 г. – немецкий ученый В. Шиккард описывает и реализует в единственном экземпляре механическую счетную машину, предназначенную для выполнения четырех арифметических операций над шестиразрядными числами.

В 1642 году, через полтора столетия после появления идей Леонардо да Винчи, французский философ и математик Блез Паскаль (1623−1662) изобрел и сконструировал первое механическое счетное устройство, позволяющее складывать в десятичной системе счисления, в котором числа "набирались" на специальных дисках. (В суммирующей машине Паскаля десятичные цифры шестизначного числа задавались поворотами дисков с цифровыми делениями, а результат операции можно было прочитать в шести окошечках – по одному на каждую цифру десятичного числа.).

Арифмометр Паскаля предназначался для его отца, работавшего сборщиком налогов. Напоминаем, что он мог только складывать.

И счетами, и машиной Паскаля пользоваться при умножении неэффективно.

Механическое устройство, которое не только складывало, но и умножало, появилось благодаря математику Готфриду Вильгельму Лейбницу (1646−1716). В 1671 году Лейбниц изобрел счетное устройство, сооружение которого было завершено в 1694 году. Развив идеи Паскаля, Лейбниц использовал операцию сдвига для поразрядного умножения чисел.

Арифмометр с подвижной кареткой механически имитировал известный школьный алгоритм "умножение в столбик", причем этот метод использовался для всех механических калькуляторов последующих веков.

Опытные образцы, построенные двумя великими учеными, способствовали созданию столетием позже, в 1820 году, Томасом Колмером (Чарльз Ксавьер Томас) (1785−1870) первого механического калькулятора, который мог не только складывать и умножать, но и вычитать и делить. Это был первый настоящий коммерческий успех механического калькулятора. Бурное развитие механических калькуляторов привело к тому, что к 1890 году добавился ряд полезных функций: запоминание промежуточных результатов с использованием их в последующих операциях, печать результатов и т.д. Однако такое развитие было следствием расширяющегося коммерческого спроса на механические настольные машины, а не результатом научных исследований.

А максимальное количество разрядов числа, которым может оперировать арифметическое устройство, стали называть размером машинного слова.

Первыми носителями информации были перфокарты. Перфокарты (картонные карты с отверстиями) в течение всего XVIII века использовались во Франции конструкторами ткацких станков в попытках заставить главную деталь станка – челнок работать автоматически, по программе.

Громадного успеха на этом пути добился Жозеф Мари Жаккард, французский изобретатель, сын лионского ткача. В первом десятилетии XIX века он создал автоматический ткацкий станок, управляемый при посредстве перфокарт. Наличие или отсутствие отверстий в перфокарте заставляло нить подниматься или опускаться при ходе челнока.

Станок Жаккарда был первым массовым промышленным устройством, автоматически работающим по заданной программе. Этот станок был отмечен медалью Парижской выставки, и вскоре только во Франции работало более 10 тысяч таких станков.

В те же годы, когда Томас Колмер работал над настольным калькулятором, свои исследования проводил Чарльз Бэббидж (1791−1871), декан кафедры математики Кембриджского университета (той кафедры, которую когда-то возглавлял Исаак Ньютон).

В 1823 году Бэббидж, получив финансовую поддержку британского правительства, начал постройку аналитической машины. Машина, как это ни парадоксально, работала на пару, но была полностью автоматизирована (вплоть до автоматической печати результатов). Машина выполняла различные действия в соответствии с заранее составленным планом работ – программой. Таким же образом – используя различные программы – функционируют и современные компьютеры.

В проекте Бэббиджа были предусмотрены все основные компоненты, имеющиеся в современном компьютере:
  • "склад" для хранения чисел (память);
  • "фабрика" для их обработки (арифметическое устройство);
  • "контора" для управления обработкой (процессор).

Архитектура новой машины Бэббиджа практически соответствует архитектуре современных ЭВМ.

Устройство должно было производить операции с 50-значными десятичными числами, имея при этом память на 1000 таких чисел. Среди команд, которые должна была выполнять машина – практически все команды современных процессоров, в том числе и изменение порядка выполнения программы (условный переход), что позволяет осуществлять выполнение конструкции если – то – иначе и организовывать в программе циклы. Для вывода использовались перфорированные карты (подобные тем, которые использовались на жаккардовом ткацком станке). Перфокарты читались с помощью одного из нескольких устройств ввода, которые приводились в действие паром. Ввод данных осуществлялся автоматически, требовался только один дежурный-оператор.

Аналитическая машина Бэббиджа – это уже универсальное средство, объединяющее в себе обработку информации, хранение информации и обмен исходными данными и результатами с человеком.

Это был статистический табулятор (суммирующая машина), построенный американцем – сыном немецких эмигрантов Германом Холлеритом (1860−1929) с целью ускорить обработку результатов переписи населения в США. (

Машина Холлерита была опробована при обработке данных переписи населения 1890 года. Результаты переписи 1890 года удалось получить в три раза быстрее, чем в предыдущий раз, к тому же они оказались более точными. В 1896 году создатель машины для переписи (статистического табулятора) основал фирму по сбыту своих машин.

Машина Германа Холлерита была весьма удачным изобретением, и в 1897 году ее даже купила Россия – также для обработки данных переписи населения. Однако позже, в 1911 году, автор "машины для переписи" продал свою фирму, которая, объединившись с некоторыми другими, стала называться Computer−Tabulating Recording Co., а позднее получила название International Business Machines Corp., сокращенно IBM.

Электромеханический – с девяностых годов XIX века

В 1896 году компания General Electric разрабатывает стандарт и использует переменный ток для питания электрических приборов. Калькуляторы оснащаются электрическими моторами для проведения вычислений и печати на бумаге.

В вычислительных устройствах все большее применение находят компоненты, потребляющие электрический ток.

В программировании, дисциплине, занимающейся составлением плана действий компьютера, тоже были свои достижения. Соратник Бэббиджа леди Ада Лавлейс (Ada Byron, Countess of Lovelace, 1815-1852), дочь поэта Джорджа Байрона, по праву считается первым программистом. Она была автором первых программ для еще не построенных компьютеров. Именно она написала множество программ для вычислительных машин Бэббиджа, причем надо отметить, что некоторые из предложенных ею терминов и определений фигурируют даже в современных учебниках программирования.

Вообще же управляющие конструкции программ для машин, спроектированных Бэббиджем, нашли свое место только в XX веке.

В 1936 году в Кембридже Алан Тьюринг представляет теоретические основы современных компьютеров. Он описывает гипотетическую "машину Тьюринга", которая (теоретически) может производить любые вычисления (выполнять любые алгоритмы).

Машина состоит из бесконечной ленты и считывающей/записывающей головки, которая может записывать на ленту и считывать с ленты символы из некоторого набора. Лента может продвигаться влево-вправо относительно головки. Машина имеет таблицу-программу, предписывающую действия по символам на ленте (что записать, куда передвинуть ленту и пр.). Несмотря на то, что машина Тьюринга не совсем похожа на компьютер, на ней можно "запрограммировать" любые алгоритмы.

Электронный – с сороковых годов XX века.

Итак, в 40-ч годах XX века все было готово для появления электронных вычислительных машин.

Одна из таких машин была построена из стандартных электромеханических частей группой ученых из лаборатории фирмы IBM под руководством Говарда Айкена. Машина Айкена получила название "Марк-1" (Marc-1). Она обрабатывала 23-разрядные десятичные числа и выполняла все четыре (!) арифметических действия. Кроме того, этот компьютер мог выполнять специальные встроенные алгоритмы для вычисления тригонометрических функций и логарифмов. "Программировалась" машина с перфоленты (информация на перфоленте кодировалась, как и на перфокартах, "пробиванием" отверстий в определенных местах). Однако она не умела отматывать ленту назад (лента двигалась только вперед), поэтому циклическое выполнение программы (с "передачей управления назад") было невозможно. В качестве устройства вывода результата можно было использовать перфоратор или электрическую пишущую машинку, которая печатала на бумаге информацию, выводимую машиной.

Первое поколение ЭВМ.

В 1942 году Джей Пр. Экерт и Джон Маучли вместе со своими сотрудниками-единомышленниками в школе электрических разработок университета штата Пенсильвания задумывают постройку быстродействующей электронно-вычислительной машины. Эта машина предназначалась для проведения математических расчетов в военном деле и получила название "ЭНИАК" (ENIAC, аббревиатура от Electronic Numeral Integrator and Computer – электронный числовой интегратор и вычислитель). Машинное слово у этого компьютера содержало всего 10 десятичных цифр (у компьютера "Марк-1" – 23), однако выполнял он 300 операций умножения за одну секунду! Такой производительности удалось достичь за счет хранения в памяти машины готовых результатов таблиц умножения (вспомогательных таблиц умножения).

В качестве электронных переключателей вместо "медленных" реле "ЭНИАК" использовал 18 тысяч вакуумных ламп, а для ввода и вывода закодированной информации – хорошо знакомые нам перфокарты.

Как и у многих современных вычислительных машин, вычислитель "ЭНИАК" состоял из нескольких блоков-устройств. Один блок умножал, другой мог извлекать квадратный корень и делить. Кроме того, имелось еще 20 десятичных регистров-счетчиков, которые использовались для сложения и для временного результатов. Для чтения чисел из регистров и записи в них требовалось 0,0002 секунды.

Если для вычислений на "ЭНИАК" употреблялись электронные блоки, то программа задавалась вручную с помощью механических переключателей и гибких кабелей со штекерами, вставляемыми в нужные разъемы (кабельные соединения). Это сильно напоминало телефонные станции начала XX века. Фактически программы для "ЭНИАК" не записывались, а "навтыкивались".

Изменение программы вычислений, производимых машиной, требовало немалых (в том числе и физических) усилий.

Еще до окончания постройки "ЭНИАК" машиной заинтересовался выдающийся американский математик Джон фон Нейман (1903−1957) и принял участие в работе группы Маучли-Экерта. Он существенно усовершенствовал машину, предложив создать блок со стандартным набором кабельных соединений всех команд и всех функций.

Управлять процессом вычислений стала программа, хранящаяся в выделенной области памяти. Программа представляла собой набор двоичных чисел, и поскольку была плохо понятна неспециалисту, то ее назвали машинной программой. Каждая команда машинной программы соответствовала определенной функции, то есть определенному кабельному соединению в блоке соединений. Теперь для загрузки новой программы не требовалось делать новые соединения или убирать старые, как при программировании с помощью кабельных соединений. Оставалось только поместить новую программу в память.

Принципиальное описание устройства и работы компьютера принято называть архитектурой ЭВМ.

После второй мировой войны Джон фон Нейман приступил к разработке собственного компьютера, основанного на современных ему идеях. Компьютер получил название IAS (Institute for Advanced Studies – компьютер Института перспективных исследований).

Впервые машина была представлена в 1952 году в Принстоне (США).

В компьютере IAS нашли применение следующие основные принципы, которые были реализованы во всех последующих цифровых машинах:
  • наличие арифметического устройства для выполнения арифметических действий;
  • расположение программы и данных в общей памяти;
  • цикл выполнения программы;
  • последовательное расположение программы в памяти;
  • наличие регистров (маленькой, быстрой и большой, медленной памяти) и т.д.

Компьютер IAS работал вполне эффективно, в частности, он производил умножение за 100 микросекунд, а доступ к памяти (чтение из памяти и запись в память) осуществлялся за 50 микросекунд. Для того времени эти результаты были весьма впечатляющими.

Гениальный ученый Джон фон Нейман ушел из жизни слишком рано.

В 1954 году фон Нейман предложил основы алгоритмического языка Фортран, который потом (гораздо позднее) был детально разработан и остается популярным до сих пор. Работы по конструированию вычислительных машин он вел до конца жизни, являясь консультантом в фирме IBM.

Его компьютер IAS может быть назван основным представителем ЭВМ первого поколения.

Второе поколение (период от конца 50-х до конца 60-х годов). В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Соединение элементов: печатные платы и навесной монтаж проводов. Габариты значительно уменьшились. Производительность от сотен тысяч до 1 млн. операций в секунду. Упростилась эксплуатация. Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ, Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы. Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации.

Третье поколение (период от конца 60-х до конца 70-х годов). Элементная база: интегральные схемы (ИС), которые вставляются в специальные гнезда на печатной плате. Увеличилась производительность от сотен тысяч до миллионов операций в секунду. Более оперативно производится ремонт обычных неисправностей. Увеличились объемы памяти. Первые интегральные схемы содержали в себе десятки, затем – сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилось к тысяче, их стали называть большими интегральными схемами – БИС; затем появились сверхбольшие интегральные схемы – СБИС.

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС. Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС. В нашей стране в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370.

На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски. Накопители на магнитных дисках (НМД) работают гораздо быстрее, чем накопители на магнитных лентах (НМЛ). Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители.

В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).

В 70-е годы получило мощное развитие линия малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP. В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система малых ЭВМ). Они меньше, дешевле, надежнее больших машин. Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами. Во второй половине 70-х годов производство мини-ЭВМ превысило производство больших машин.

Четвертое поколение (от конца 70-х годов по настоящее время). Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Такие микропроцессоры осуществляют автоматическое управление работой этой техники. С появлением микропроцессоров связано одно из важнейших событий в истории вычислительной техники - создание и применение микроЭВМ.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры. Начало широкой продажи персональных ЭВМ связано с именами С. Джобса и В. Возняка, основателей фирмы "Эппл компьютер" (Apple Computer), которая с 1977 года наладила выпуск персональных компьютеров "Apple".

С 1982 года фирма IBM приступила к выпуску модели персонального компьютера, ставшего эталоном на долгие времена – IBM PC (Personal Computer). Фирма придерживалась принципа открытой архитектуры и магистрально-модульного построения компьютера (любой изготовитель может установить свои комплектующие к компьютеру).

Есть и другая линия в развитии ЭВМ четвертого поколения. Это суперЭВМ. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Первой суперЭВМ четвертого поколения была американская машина ILLIAK-4, за ней появились CRAY, CYBER и др. Из отечественных машин к этой серии относится многопроцессорный вычислительный комплекс ЭЛЬБРУС. Развитие таких вычислительных систем происходит по пути увеличения числа процессоров и их быстродействия. Современные многопроцессорные вычислительные комплексы включают в себя десятки тысяч процессоров. Их быстродействие исчисляется сотнями миллиардов операций в секунду.

Современные ЭВМ превосходят компьютеры предыдущих поколений компактностью, огромными возможностями и доступностью для разных категорий пользователей. Основные технические характеристики современного персонального компьютера: процессор (быстродействие – тактовая частота, разрядность), оперативная и внешняя память (объем памяти, скорость доступа к памяти и др.), видеопамять, средства ввода-вывода, средства коммуникации и др.

Очень важно правильно выбрать конфигурацию компьютера:
  • тип основного микропроцессора и материнской платы;
  • объем основной и внешней памяти;
  • номенклатуру устройств внешней памяти;
  • виды системного и локального интерфейсов;
  • тип видеоадаптера и видеомонитора;
  • типы клавиатуры, принтера, манипулятора, модема и др.

ЭВМ пятого поколения – это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень. Машины пятого поколения – это реализованный искусственный интеллект. В них будет возможным ввод с голоса, голосовое общение, машинное "зрение", машинное "осязание". Многое уже практически сделано в этом направлении.

ЭВМ пятого поколения должны удовлетворять следующим качественно новым функциональным требованиям:
  1. Обеспечивать простоту применения ЭВМ путем эффективных систем ввода-вывода информации, диалоговой обработки информации с использованием естественных языков, возможности обучаемости, ассоциативных построений и логических выводов (интеллектуализация ЭВМ);
  2. Упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках; усовершенствовать инструментальные средства разработчиков;
  3. Улучшить основные характеристики и эксплуатационные качества ЭВМ, обеспечить их разнообразие и высокую адаптируемость к приложениям.