Модуль Теория строения атома. Периодический закон и периодическая система Д. И. Менделеева
Вид материала | Закон |
- И. А. Моу «исош №1» п. Ивня Игра по химии «Умники и умницы» Тема: «Периодический закон, 114.97kb.
- Тема урока: «Периодический закон и периодическая система химических элементов, 266.68kb.
- Темы рефератов или презентаций Биотехнология и генная инженерия технологии XXI века, 47.96kb.
- Урок а «Периодический закон и периодическая система химических элементов Д. И. Менделеева.», 106.31kb.
- Химическая конференция (к 176-летию со дня рождения Д. И. Менделеева), 204.32kb.
- Жизнь и научная деятельность Д. И. Менделеева. Периодический закон и периодическая, 155.59kb.
- Закон и периодическая система химических элементов Д. И. Менделеева" Значение и место, 131.75kb.
- Бековского района пензенской области, 115.96kb.
- Конкурсное задание «учебное занятие»13 апреля, 71.51kb.
- Применение коллективного способа обучения при изучении темы «Периодический закон, 94.15kb.
Магнитное квантовое число (m) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.
Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.
Для p- орбитали (l = 1) - три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1.
Для d- орбитали (l = 2) - пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2.
Таким образом, на s- подуровне - одна, на p- подуровне - три, на d- подуровне - пять, на f- подуровне - 7 орбиталей.
Спиновое квантовое число (s) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и –1/2 соответствующие противоположным направлениям вращения.
Принципы заполнения орбиталей Принцип Паули. В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами).
Правило Клечковского (принцип наименьшей энергии). В основном состоянии каждый электрон располагается так, чтобы его энергия была минимальной. Чем меньше сумма (n + l), тем меньше энергия орбитали. При заданном значении (n + l) наименьшую энергию имеет орбиталь с меньшим n. Энергия орбиталей возрастает в ряду:
1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d » 4f < 6p < 7s.
Правило Хунда. Атом в основном состоянии должен иметь максимально возможное число неспаренных электронов в пределах определенного подуровня.
Полная электронная формула элемента
Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых: Главное квантовое число n минимально;
Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально);
В пределах одного подуровня электроны располагаются таким образом, чтобы их суммарный спин был максимален, т.е. содержал наибольшее число неспаренных электронов (правило Хунда).
При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n2 электронов, расположенных на n2 подуровнях.
Пример. Цезий (Сs) находится в 6 периоде, его 55 электронов (порядковый номер 55) распределены по 6 энергетическим уровням и их подуровням. Cоблюдая последовательность заполнения электронами орбиталей получим:
55Cs 1s22s22p63s23p63d104s24p64d105s25p66s1 От величины положительного заряда ядра атома зависят все свойства Элемента и его положение в периодической системе.
Строение, субатомные частицы
Хотя слово атом в первоначальном значении обозначало частицу, которая не делится на меньшие части, согласно научным представлениям он состоит из более мелких частиц, называемых субатомными частицами. Атом состоит из электронов, протонов, все атомы, кроме водорода-1, содержат также нейтроны.
Электрон является самой лёгкой из составляющих атом частиц с массой 9,11×10−28 г, отрицательным зарядом и размером, слишком малым для измерения современными методами. Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726×10−24 г). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929×10−24 г). При этом масса ядра меньше суммы масс составляющих её протонов и нейтронов из-за эффекта дефекта массы. Нейтроны и протоны имеют сравнимый размер, около 2,5×10−15 м, хотя размеры этих частиц определены плохо.
Электронное облако, орбиталь — термин электронное облако не совсем корректен с точки зрения квантовой механики, поэтому вместо него физики чаще всего говорят об «облаке вероятности».
Электроны в атоме притягиваются к протонам, находящимся в ядре, под действием электромагнитных сил. Эти силы удерживают электроны внутри потенциального барьера, окружающего ядро. Для того, чтобы электрон смог преодолеть притяжение ядра, ему необходимо передать энергию от внешнего источника. Чем ближе электрон находится к ядру, тем больше энергии для этого необходимо.
Электронам, как и другим частицам, свойственен корпускулярно-волновой дуализм. Электронное облако представляют собой часть потенциального барьера, в которой электронам соответствуют трёхмерные стоячие волны, не изменяющие своей формы с течением времени относительно ядра. Говорят, что электрон движется по орбитали. На самом же деле это состояние описывают волновой функцией, квадрат которой характеризует плотность вероятности нахождения частицы в данной точке пространства в данный момент времени. Существует дискретный набор таких орбиталей, и электроны могут находиться длительное время только в этих состояниях, так как они являются наиболее устойчивыми.
Каждой орбитали соответствует свой уровень энергии. Электрон может перейти на уровень с большей энергией, поглотив фотон. При этом он окажется в новом квантовом состоянии с большей энергией. Аналогично, он может перейти на уровень с меньшей энергией, излучив фотон. Энергия фотона при этом будет равна разности энергий электрона на этих уровнях.
Свойства
По определению, любые два атома с одним и тем же числом протонов в их ядрах относятся к одному химическому элементу. Атомы с одним и тем же количеством протонов, но разным количеством нейтронов называют изотопами данного элемента. Например, атомы водорода всегда содержат один протон, но существуют изотопы без нейтронов (водород-1, иногда также называемый протием — наиболее распространённая форма), с одним нейтроном (дейтерий) и двумя нейтронами (тритий). Известные элементы составляют непрерывный натуральный ряд по числу протонов в ядре, начиная с атома водорода с одним протоном и заканчивая атомом унуноктия, в ядре которого 118 протонов. Все изотопы элементов периодической системы, начиная с номера 83 (висмут), радиоактивны.
Энергетический уровень, атомная спектральная линия
Когда электрон находится в связанном состоянии в атоме, он обладает потенциальной энергией, которая обратно пропорциональна его расстоянию от ядра. Эта энергия обычно измеряется в электронвольтах (эВ) и равна энергии, которую надо передать электрону, чтобы оторвать его от атома. Согласно квантовомеханической модели атома связанный электрон может занимать только дискретный набор разрешённых энергетических уровней — состояний с определённой энергией. Наинизшее из разрешённых энергетических состояний называется основным, а все остальные — возбуждёнными.
Для перехода электрона с одного энергетического уровня на другой нужно передать ему или отнять у него энергию. Это происходит путём соответственно поглощения или испускания фотона, причём энергия этого фотона равна абсолютной величине разности энергий начального и конечного уровней электрона. Энергия испущенного фотона пропорциональна его частоте, поэтому переходы между разными энергетическими уровнями проявляются в различных областях электромагнитного спектра. Каждый элемент имеет уникальный спектр испускания, который зависит от заряда ядра, заполнения электронных подоболочек, взаимодействия электронов, а также других факторов.
Валентность
Внешняя электронная оболочка атома, если она не полностью заполнена, называется валентной оболочкой, а электроны этой оболочки называются валентными электронами. Число валентных электронов определяет то, как атом связывается с другими атомами посредством химической связи. Путём образования химических связей атомы стремятся заполнить свои внешние валентные оболочки.
Чтобы показать повторяющиеся химические свойства химических элементов, их упорядочивают в виде периодической таблицы (таблицы Менделеева). Элементы с одинаковым числом валентных электронов формируют группу, которая изображается в таблице в виде столбца (движение по горизонтальному ряду соответствуют заполнению валентной оболочки электронами). Элементы, находящиеся в самом правом столбце таблицы, имеют полностью заполненную электронами внешнюю оболочку, поэтому они отличаются крайне низкой химической активностью и называются инертными или благородными газами.
Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.
Тест № 2 к лекции № 2, модуль № 2.
1. Для элементов главных подгрупп число электронов во внешнем слое равно
1) числу нейтронов, 2) номеру периода,
3) заряду ядра атома, 4) номеру группы.
2. Какое число электронов содержится в атоме азота?
1) 5 2) 2 3) 7 4) 14
3. В атоме углерода распределение электронов по электронным слоям соответствует ряду чисел
1) 4;2 2) 2;4 3) 2;2;2 4) 2;6;4
4. У атома азота число электронов во внешнем энергетическом уровне и число протонов равны соответственно
1) 5, 7 2) 3, 17 3) 5, 14 4) 3, 14
5. Электронная конфигурация 1s22s22p63s23p5 соответствует атому
1) хлора 2) магния 3) серы 4) кремния
6. в атоме фосфора число электронных слоев равно
1) 5 2) 2 3) 3 4) 4
7. Число электронов во внешнем слое элементов главных подгрупп равно
1) высшей валентности по водороду
2) номеру периода
3) номеру группы
4) порядковому номеру элемента.
8. Какое количество нейтронов содержит ядро атома 3717CI?
1) 52 2) 20 3) 35 4) 17
Лабораторная работа № 1 к лекции № 2 Модуль № 2
Задание выполняется в развернутом виде, решение необходимо выслать на электронный адрес педагога.
1. Изобразите строение атомов следующих элементов:
а) натрия;
б) кремния
2. Сравните строение атомов азота и фосфора.
3. По данным о распределении валентных электронов найдите элемент:
а) 1s2 2s1
б) 1s2 2s22p63s23p6
в) 1s22s22p63s23p4
г) 1s2 2s22p4
д) 1s22s22p63s23p64s1
4. Составьте электронные формулы атомов а) азота; б) серы; в) магния; г) кислорода.
Лекция № 3, модуль № 2
Периодический закон в свете о теории строении атома. Теоретическое обоснование периодической системы Д.И. Менделеева. Периодическое изменение свойств элементов и их соединений.
Учение о строении атомов вскрыло глубокий физический смысл периодического закона. Главной характеристикой атома является не атомная масса, а заряд ядра. Он определяет число электронов в оболочке атома, ее строение, и тем самым все свойства элемента и его положение в периодической системе. Поэтому, современная формулировка периодического закона Д.И. Менделеева такова: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов или периодически повторяющихся сходных электронных структур.
Графическим выражением периодического закона является периодическая система. Первый вариант системы элементов имел длинную форму, т.е. в ней периоды располагались одной строкой. Короткая форма была опубликована в 1870 г. В этом варианте периоды разбиваются на ряды, группы – на подгруппы (А главную, В – побочную). В настоящее время известно более 500 вариантов графического изображения периодической системы. Наилучшие из них – варианты, предложенные Д.И.Менделеевым.
В периодической системе 7 периодов. 1, 2, 3 – малые периоды, 4,5,6,7 – большие, 7 – незавершенный. Элементы 2 и 3 периодов Д.И. Менделеев назвал типическими. Их свойства закономерно изменяются от типичного металла до инертного элемента
Период – это ряд элементов, в атомах которых происходит заполнение одинакового числа электронных уровней.
В системе имеется восемь групп. В группы объединяют элементы с одинаковым числом электронов на внешнем уровне. Номер группы определяет валентность элемента, а также высшую степень окисления элемента. В подгруппе располагаются элементы – аналоги (с аналогичными электронными структурами). В главную подгруппу входят элементы больших и малых периодов, валентные электроны которых располагаются на внешнем энергетическом уровне, а побочная подгруппа объединяет элементы, валентные электроны которых находятся на внешнем и предвнешнем энергетическом уровне.
Порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов. Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1-до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов; то и они периодически повторяются.
В этом физический смысл периодического закона. В качестве примера рассмотрим изменение свойств у первых и последних элементов периодов. Каждый период в периодической системе начинается элементами атомы, которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства — легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы — Li, Na, К, Rb, Cs. Заканчивается период элементами, атомы которых на внешнем уровне содержат 2 (s2) электрона (в первом периоде) или 8 (s2p6) электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Ar, Kr, Xe, имеющие инертные свойства. Именно вследствие сходства строения внешнего энергетического уровня похожи их физические и химические свойства.2s2 2p6 3s2 3p6 4s2 4p6 4d10 5s2 5p6 5d10 6s1
В каждом периоде с возрастанием порядкового номера элементов металлические свойства постепенно ослабевают и возрастают неметаллические, заканчивается период инертным газом. В свете учения о строении атома становится понятным разделение всех элементов на семь периодов, сделанное Д. И. Менделеевым. Номер периода соответствует числу энергетических уровней атома, то есть положение элементов в периодической системе обусловлено строением их атомов. В зависимости от того, какой подуровень заполняется электронами, все элементы делят на четыре типа.
1. s-элементы. Заполняется s-подуровень внешнего уровня (s1 — s2). Сюда относятся первые два элемента каждого периода.
2. р-элементы. Заполняется р-подуровень внешнего уровня (р1 p6)- Сюда относятся последние шесть элементов каждого периода, начиная со второго.
3. d-элементы. Заполняется d-подуровень последнего уровня (d1 — d10), а на последнем (внешнем) уровне остается 1 или 2 электрона. К ним относятся элементы вставных декад (10) больших периодов, начиная с 4-го, расположенные между s- и p-элементами (их также называют переходными элементами).
4. f-элементы. Заполняется f-подуровень глубинного (третьего снаружи) уровня (f1 —f14), а строение внешнего электронного уровня остается неизменным. Это лантаноиды и актиноиды, находящиеся в шестом и седьмом периодах.
Таким образом, число элементов в периодах (2-8-18-32) соответствует максимально возможному числу электронов на соответствующих энергетических уровнях: на первом — два, на втором — восемь, на третьем — восемнадцать, а на четвертом — тридцать два электрона. Деление групп на подгруппы (главную и побочную) основано на различии в заполнении электронами энергетических уровней. Главную подгруппу составляют s- и p-элементы, а побочную подгруппу — d-элементы.
В каждой группе объединены элементы, атомы которых имеют сходное строение внешнего энергетического уровня. При этом атомы элементов главных подгрупп содержат на внешних (последних) уровнях число электронов, равное номеру группы. Это так называемые - валентные электроны. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вторых снаружи) уровней, в чем и состоит основное различие в свойствах элементов главных и побочных подгрупп. Отсюда следует, что номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом заключается физический смысл номера группы.
С позиций теории строения атома легко объясняется возрастание металлических свойств элементов в каждой группе с ростом заряда ядра атома. Сравнивая, например, распределение электронов по уровням в атомах 9F (1s2 2s2 2р5) и 53J (1s2 2s2 2р6 3s2 Зр6 3d10 4s2 4р6 4d10 5s2 5p5) можно отметить, что у них по 7 электронов на внешнем уровне, что указывает на сходство свойств. Однако внешние электроны в атоме йода находятся дальше от ядра и поэтому слабее удерживаются. По этой причине атомы йода могут отдавать электроны или, иными словами, проявлять металлические свойства, что нехарактерно для фтора. Итак, строение атомов обуславливает две закономерности: а) изменение свойств элементов по горизонтали — в периоде слева направо ослабляются металлические и усиливаются неметаллические свойства; б) изменение свойств элементов по вертикали — в группе с ростом порядкового номера усиливаются металлические свойства и ослабевают неметаллические.
Таким образом: по мере возрастания заряда ядра атомов химических элементов периодически изменяется строение их электронных оболочек, что является причиной периодического изменения их свойств.
Структура периодической Системы Д. И. Менделеева.
Периодическая система Д. И. Менделеева подразделяется на семь периодов – горизонтальных последовательностей элементов, расположенных по возрастанию порядкового номера, и восемь групп – последовательностей элементов обладающих однотипной электронной конфигурацией атомов и сходными химическими свойствами. Первые три периода называются малыми, остальные – большими. Первый период включает два элемента, второй и третий периоды – по восемь, четвёртый и пятый – по восемнадцать, шестой – тридцать два, седьмой (незавершённый) – двадцать один элемент.
Каждый период (исключая первый) начинается щелочным металлом и заканчивается благородным газом. Элементы 2 и 3 периодов называются типическими. Малые периоды состоят из одного ряда, большие – из двух рядов: чётного (верхнего) и нечётного (нижнего). В чётных рядах больших периодов расположены металлы, и свойства элементов слева направо изменяются слабо. В нечётных рядах больших периодов свойства элементов изменяются слева направо, как у элементов 2 и 3 периодов. В периодической системе для каждого элемента указывается его символ и порядковый номер, название элемента и его относительная атомная масса.
Координатами положения элемента в системе является номер периода и номер группы. Элементы с порядковыми номерами 58-71, именуемыми лантаноидами, и элементы с номерами 90-103 - актиноиды – помещаются отдельно внизу таблицы. Группы элементов, обозначаемые римскими цифрами, делятся на главные и побочные подгруппы. Главные подгруппы содержат 5 элементов (или более). В побочные подгруппы входят элементы периодов, начиная с четвёртого.
Химические свойства элементов обуславливаются строением их атома, а точнее строением электронной оболочки атомов. Сопоставление строения электронных оболочек с положением элементов в периодической системе позволяет установить ряд важных закономерностей:
1. Номер периода равен общему числу энергетических уровней, заполняемых электронами, у атомов данного элемента.
2. В малых периодах и нечётных рядах больших периодов с ростом положительного заряда ядер возрастает число электронов на внешнем энергетическом уровне. С этим связано ослабление металлических и усиление неметаллических свойств элементов слева направо. Номер группы, указывает число электронов, которые могут участвовать в образовании химических связей (валентных электронов В подгруппах с ростом положительного заряда ядер атомов элементов усиливаются их металлические и ослабляются неметаллические свойства.).
До открытия Д. И. Менделеева в науке уже были предприняты попытки классифицировать химические элементы по определенным признакам.
Предшественники Д. И. Менделеева, отмечая сходство некоторых элементов, объединили их в отдельные группы или классы. Например, разделение элементов на два класса — металлы и неметаллы — оказалось неточным, потому что есть химические элементы с двойственными свойствами — как металлов, так и неметаллов.
Важным этапом в работе по созданию классификации химических элементов было объединение сходных элементов в естественные семейства, например щелочные металлы, галогены.
Однако все ученые, пытаясь классифицировать химические элементы, искали сходство между элементами одного семейства, но не могли себе представить, что все элементы тесно связаны друг с другом.
Гениальное подтверждение того, что все химические элементы взаимосвязаны, сделал выдающийся русский химик Д. И. Менделеев, который сравнил их на основе двух свойств: атомной массы и валентности, т. е. способности образовывать известные формы соединений (оксиды, водородные соединения и др.).
В 1869 г. он впервые сформулировал периодический закон:
Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.
Это позже стало известно, что у атома есть ядро, которое имеет определенный заряд и массу. Причем чем больше заряд ядра, тем больше в нем содержится протонов и нейтронов. Это в конечном счете определяет взаимосвязь заряда атома и его массы. Чем больше заряд, тем, как правило, больше масса атома. Необходимо было обладать большой научной интуицией, чтобы, не зная состав атомного ядра, взять за основу систематизации элементов массу их атомов. Расположив известные элементы по мере увеличения массы их атомов, ученый обнаружил повторяемость свойств элементов, образующих одну большую последовательность.
Данные о строении атома подтвердили и объяснили периодическое изменение свойств химических элементов и теперь периодический закон формулируют так: Свойства простых веществ, а также формы, и свойства их соединений находятся в периодиче ской зависимости от зарядов ядер атомов.
Периодическое изменение свойств химических элементов с точки зрения строения атомов можно объяснить так. Возрастание положительного заряда атомных ядер приводит к возрастанию числа электронов в атоме. Число электронов равно заряду ядра атома. Электроны же располагаются в атоме не как угодно, а по электронным слоям. Каждый электронный слой имеет определенное число электронов. По мере заполнения одного слоя начинает заполняться следующий. А поскольку от числа электронов на внешнем слое в основном зависят свойства элементов, то и свойства периодически повторяются.
В качестве примера можно рассмотреть накопление электронов на внешнем электронном слое атомов второго и третьего периодов. Каждый из периодов начинается с элементов, атомы которых на внешнем слое имеют один валентный электрон (Li, Na). Вследствие легкой отдачи этих электронов элементы проявляют сходные свойства и называются щелочными металлами.
В конце этих периодов находятся галогены, имеющие семь электронов на внешнем слое атомов, и инертные газы, у которых внешний слой завершен и содержит восемь электронов.
Таким образом, в каждом периоде с возрастанием заряда ядра металлические свойства элементов постепенно ослабевают, усиливаются неметаллические. Накопление восьми электронов на внешнем слое (инертные газы) и появление еще одного электрона у следующего атома приводит к резкому скачку в свойствах элементов и началу нового периода.
На основе периодического закона были систематизированы элементы, или, говоря иначе, построена периодическая система химических элементов. Графическое изображение этого закона называется периодической таблицей.
В таблице каждый химический элемент имеет атомный номер, который определяется числом протонов в ядре атома, т. е. атомный номер численно равен заряду ядра. Таким образом, основной признак, который определяет химический элемент, — это заряд его ядра. Массу атома в основном определяют протоны и нейтроны, составляющие ядро.
Периодом называется ряд элементов, расположенных в порядке возрастания атомных масс, начинающийся со щелочного металла (за исключением первого периода; он начинается с водорода) и заканчивающийся инертным газом. В первый период входят только два элемента, во второй и третий — по восемь (эти периоды называются малыми). Четвертый период образован восемнадцатью элементами, а пятый и шестой — еще большим числом элементов.
Чтобы определить, какая подгруппа — главная, а какая — побочная, важно помнить, что в состав главных подгрупп входят элементы как малых, так и больших периодов.
Побочные подгруппы образованы только элементами больших периодов. Например, в состав главной подгруппы II группы входят элементы второго и третьего периодов — бериллий Be и магний Mg. Побочная подгруппа начинается с элемента четвертого (большого) периода — цинка Zn. И еще одно отличие: главная подгруппа, как правило, состоит из большего числа элементов, чем побочная (в VIII группе наоборот).
В малых периодах, как было отмечено выше, по мере увеличения атомного номера элемента наблюдается закономерное увеличение числа электронов, находящихся на внешнем электронном слое атомов элементов. Как следствие этого от щелочного металла к галогену уменьшаются металлические свойства элементов и увеличиваются неметаллические свойства. Эта же закономерность проявляется и в свойствах веществ, образованных этими элементами. Так, например, оксид лития проявляет основные свойства, оксид бериллия — амфотерные. Высшие оксиды остальных элементов являются кислотными (кислородное соединение фтора является не оксидом, а фторидом).
В главной подгруппе по мере увеличения атомного номера элемента наблюдается усиление металлических свойств элемента и уменьшение неметаллических.
Это можно объяснить следующим образом. У элементов V группы на внешнем электронном слое по пять электронов. Однако внешние электроны у атома висмута находятся дальше от ядра и поэтому слабее удерживаются около него. Поэтому атомы висмута могут отдавать электроны, иначе говоря, проявлять металлические свойства, что не характерно для азота.
Такая же закономерность в свойствах элементов и их соединений наблюдается в любой группе. Так, IV группа начинается с двух неметаллов — углерода С и кремния Si, далее следует германий Ge с промежуточными свойствами, и заканчивается группа оловом Sn и свинцом РЬ — металлами.
Изменяются в группах и свойства соединений: оксид углерода (IV) — кислотный оксид, а оксид свинца обладает основными свойствами.
Периодический закон позволил систематизировать свойства химических элементов и их соединений.
При создании периодической системы Д. И. Менделеев предсказал существование многих еще не открытых элементов, оставив для них свободные ячейки, и описал их свойства.