Лекция 15. Электроны в кристаллах
Вид материала | Лекция |
- Программа вступительных испытаний (собеседования) для поступающих в магистратуру, 41.05kb.
- Конспект лекций «материаловедение», 214.99kb.
- №1. Общая характеристика строительных материалов, 202.29kb.
- Атом. Ядро атома. Ядерные реакции. Термоядерный синтез, 209.52kb.
- Элементы квантовой механики и физики атомов, молекул, твердых тел, 156.85kb.
- Элементы квантовой механики Атом Резерфорда – Бора и гипотеза де Бройля Ядерная модель, 38.71kb.
- Г. Г. Филипенко квантовая механика. Введение в начальные условия физики твердого тела., 20.61kb.
- № п/п Наименование работы Форма работы Выходные данные Объем в стр. Фамилии соавторов, 82.27kb.
- «Социальная стратификация и социальная мобильность», 46.19kb.
- Разработки, 142.37kb.
15.3. Контакт электронного и дырочного полупроводников
Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой — дырочную проводимость, называется электронно-дырочным переходом (или р-n-переходом). Эти переходы имеют большое практическое значение, являясь основой работы многих полупроводниковых приборов. р-n-Переход нельзя осуществить просто механическим соединением двух полупроводников. Обычно области различной проводимости создают либо при выращивании кристаллов, либо при соответствующей обработке кристаллов.
15.3.1. Полупроводниковые диоды (p-n-переход)
Пусть донорный полупроводник (работа выхода – Аn уровень Ферми - EFn) приводится в контакт (рис. 15.11, а, б) с акцепторным полупроводником (работа выхода - Ap, уровень Ферми - EFp). Электроны из n-полупроводника, где их концентрация выше, будут диффундировать в р-полупроводник, где их концентрация ниже. Диффузия же дырок происходит в обратном направлении - в направлении р → n.
В n-полупроводнике, из-за ухода электронов, вблизи границы остается некомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов.
В p-полупроводнике, из-за ухода дырок, вблизи границы образуется отрицательный объемный заряд неподвижных ионизованных акцепторов (рис. 15.11, а). Эти объемные заряды образуют у границы двойной электрический слой, поле которого, направленное от n-области к р-области, препятствует дальнейшему переходу электронов в направлении n → р и дырок в направлении р → n. Если концентрации доноров и акцепторов в полупроводниках n- и р-типа одинаковы, то толщины слоев d1 и d2 (рис. 15.11, в), в которых локализуются неподвижные
заряды, равны (d1 = d2).
Рис. 15.11.
При определенной толщине р-n-перехода наступает равновесное состояние, характеризуемое выравниванием уровней Ферми для обоих полупроводников (рис, 15.11, в). В области р-n-перехода энергетические зоны искривляются, в результате чего возникают потенциальные барьеры как для электронов, так и для дырок. Высота потенциального барьера eφ определяется первоначальной разностью положений уровня Ферми в обоих полупроводниках. Все энергетические уровни акцепторного полупроводника подняты относительно уровней донорного полупроводника на высоту, равную eφ, причем подъем происходит на толщине двойного слоя d.
Толщина d слоя р-n-перехода в полупроводниках составляет примерно 10-б - 10-7 м, а контактная разность потенциалов - десятые доли вольт. Носители тока способны преодолеть такую разность потенциалов лишь при температуре несколько тысяч градусов, т.е. при обычных температурах равновесный контактный слой является запирающим (характеризуется повышенным сопротивлением).
Сопротивление запирающего слоя можно изменить с помощью внешнего электрического поля. Если приложенное к р-n-переходу внешнее электрическое иоле направлено от n-полупроводника к р-полупроводнику (рис. 15.12, а), т.е. совпадает с полем контактного слоя, то оно вызывает движение электронов в n-полупроводнике и дырок в р-полупроводнике от границы р-n-перехода в противоположные стороны. В результате запирающий слой расширится и его сопротивление возрастет.
Направление внешнего поля, расширяющего запирающий слой, называется запирающим (обратным). В этом направлении электрический ток через р-п-переход практически не проходит. Ток в запирающем слое в запирающем направлении образуется лишь за счет неосновных носителей тока (электронов в р-полупроводнике и дырок в п-полупроводнике).
Если приложенное к р-п-переходу внешнее электрическое поле направлено
Рис. 15.12.
противоположно полю контактного слоя (рис. 15.12, б), то оно вызывает движение электронов в п-полупроводнике и дырок в р-полупроводнике к границе р-п-перехода
навстречу друг другу. В этой области они рекомбинируют, толщина контактного слоя и его сопротивление уменьшаются. Следовательно, в этом направлении электрический ток проходит сквозь р-п-переход в направлении от р-полупроводника к п-полупроводнику; оно называется пропускным (прямым).
Таким образом, р-п-переход (подобно контакту металла с полупроводником)
обладает односторонней (вентильной) проводимостью.
На рис.15.13 представлена вольт-амперная характеристика р-п-перехода. Как уже указывалось, при пропускном (прямом) напряжении внешнее электрическое поле способствует движению основных носителей тока к границе р-п-перехода (см. рис. 15.12, б). В результате толщина контактного слоя уменьшается. Соответственно уменьшается и сопротивление перехода (тем сильнее, чем больше напряжение), а сила тока становится большой (правая ветвь на рис.15.13). Этот направление тока называется прямым. При запирающем (обратном) напряжении внешнее электрическое поле препятствует движению основных носителей тока к границе р-п-перехода (см. рис. 15.12, а) и способствует движению неосновных носителей тока, концентрация которых в полупроводниках невелика. Это приводит к увеличению толщины контактного слоя, обедненного основными
Рис. 15.13.
носителями тока. Соответственно увеличивается и сопротивление перехода. Поэтому в данном случае через р-п-переход протекает только небольшой ток (он называется обратным), полностью обусловленный неосновными носителями тока (левая ветвь рис. 15.13). Быстрое возрастание этого тока означает пробой контактного слоя и его разрушение. При включении в цепь переменного тока р-п-переходы действуют как выпрямители.
15.3.2. Полупроводниковые триоды (транзисторы)
Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлектродной лампы—диода. Поэтому полупроводниковое устройство, содержащее один р-п-переход, называется полупроводниковым (кристаллическим) диодом.
р-п-Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратую связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов, или транзисторов. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью.
Для примера рассмотрим принцип работы плоскостного триода р-п-р, т.е. триода на основе п-полупроводника (рис. 15.14). Рабочие «электроды» триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов - металлических проводников.
Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором — постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение
Рис. 15.14.
подается на входное сопротивление Rвх , а усиленное - снимается с выходного сопротивления Rвых . Протекание тока в цепи змиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их «впрыскиванием» - инжекцией - в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), вследствие чего изменяется ток коллектора. Следовательно, всякое изменение тока в цени эмиттера вызывает изменение тока в цепи коллектора.
Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении — переменное напряжение. Величина усиления зависит от свойств р-п-переходов, нагрузочных сопротивлений и напряжения батареи Бк. Обычно Rвых >> R вх, поэтому Uвых значительно превышает входное напряжение Uвх ( усиление может достигать 10000). Так как мощность переменного тока, выделяемая в Rвых, может быть больше, чем расходуемая в цени эмиттера, то транзистор дает и усиление мощности. Эта усиленная мощность появляется за счет источника тока, включенного в цепь коллектора.
Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряжением на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.
Принцип работы транзистора п-р-п-типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, высокие КПД и срок службы, отсутствие накаливаемого катода (поэтому потребление меньшей мощности), отсутствие необходимости в вакууме и т. д.) транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.
15.4. Контактные и термоэлектрические явления по зонной теории
15.4.1. Работа выхода и термоэлектронная эмиссия
Поверхность металла удается покинуть только тем электронам проводимости, энергия которых оказывается достаточной для преодоления потенциального барьера, имеющегося на поверхности. Удаление электрона от наружного слоя ионов peшетки приводит к возникновению в том месте, которое покинул электрон, избыточного положительного заряда. Кулоновское взаимодействие с этим зарядом заставляет электрон, скорость которого не очень велика, вернуться обратно. В результате металл оказывается окруженным тонким облаком электронов. Это облако образует совместно с наружным слоем ионов двойной электрический слой. Силы, действующие на электрон в таком слое, направлены внутрь металла. Работа, совершаемая против этих сил при переводе электрона из металла наружу, идет на увеличение потенциальной энергии электрона.
Рис. 15.15.
Полная энергия электрона в металле слагается из потенциальной и кинетической энергий. При абсолютном нуле значения кинетической энергии электронов проводимости заключены в пределах от нуля до совпадающей с уровнем Ферми энергии Еmax. На рис. 15.15 энергетические уровни зоны проводимости «вписаны» в потенциальную яму. Для удаления за пределы металла разным электронам нужно сообщить неодинаковую энергию. Так, электрону, находящемуся на самом нижнем уровне зоны проводимости, необходимо сообщить энергию ЕР0; для электрона, находящегося на уровне Ферми, достаточна энергия ЕР0 - Еmax = ЕР0 - EF.
Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого или жидкого тела в вакуум, называется работой выхода. Работу выхода принято обозначать через eφ, где φ — величина, называемая потенциалом выхода. Работа выхода электрона из металла определяется выражением
еφ = ЕР0 - EF | (15.9) |
При повышении температуры часть электронов проводимости имеет энергию достаточную для преодоления потенциального барьера на границе металла. Испускание электронов нагретым металлом называется термоэлектронной эмиссией.
Этот эффект используется в электронных лампах, где катод разогревается до высоких температур. Измеряя вольт-амперную характеристику двухэлектродной лампы (катод, анод) при разных температурах катода и анодного напряжения можно исследовать термоэлектронную эмиссию.
Исходя из квантовых представлений, Дэшман получил (1923 г.) для тока насыщения формулу
Jнас = AT 2 exp(-eφ/kT) | (15.10) |
Здесь eφ – работа выхода, А –константа. Температурный ход тока насыщения эта передает вполне удовлетворительно. Формула (15.10) называется формулой Ричардсона- Дэшмана.
15.4.2. Контактная разность потенциалов
Если привести два разных металла в соприкосновение, между ними возникает разность потенциалов, которая называется контактной. В результате в окружающем металлы пространстве появляется электрическое поле.
Контактная разность потенциалов обусловлена тем, что при соприкосновении металлов часть электронов из одного металла переходит в другой. В верхней части рис. 15.16 изображены два металла до приведения их в соприкосновение и даны их графики потенциальной энергии электрона. Уровень Ферми в первом металле лежит, по предположению, выше, чем во втором. . В нижней части рис. 15.16 изображены два металла после приведения их в соприкосновение и даны их графики потенциальной энергии электрона. Естественно, что при возникновении контакта между металлами электроны с самых высоких уровней в первом металле станут переходить на более низкие свободные уровни второго металла. В результате потенциал первого металла возрастет, а второго — уменьшится. Соответственно потенциальная энергия электрона в первом металле уменьшится, а во втором
увеличится (напомним, что потенциал металла и потенциальная энергия электрона в нем имеют разные знаки). В статистической физике доказывается, что условием равновесия между соприкасающимися металлами (а также между полупроводниками или металлом и полупроводником) является равенство полных энергий, соответствующих уровням Ферми. При этом условии уровни Ферми обоих металлов располагаются на схеме на одинаковой высоте. На рис. 15.16 видно, что в этом случае потенциальная энергия электрона в непосредственной близости к поверхности первого металла (точки А и В на рис.15.16, б) будет на еφ2 - eφ1 меньше, чем вблизи второго металла. Следовательно, между точками А и В устанавливается разность потенциалов, которая, как следует из рисунка, равна
Рис.15.16.
∆φ' = (eφ2 – eφ1)/e = φ2 - φ1 | (15.11) |
Разность потенциалов (15.11), обусловленная различием работ выхода контактирующих металлов, называется внешней контактной разностью потенциалов. Чаще говорят просто о контактной разности потенциалов, подразумевая под ней внешнюю.
Если уровни Ферми для двух контактирующих металлов неодинаковы, то между внутренними точками металлов наблюдается внутренняя контактная разность потенциалов которая, как следует из рисунка, равна
∆φ'' = (EF1 – EF2)/e. | (15.12) |
В квантовой теории доказывается, что причиной возникновения внутренней контактной разности потенциалов является различие концентраций электронов в контактирующих металлах. ∆φ'' зависит от температуры Т контакта металлов (поскольку наблюдается зависимость ЕF от Т), обусловливая термоэлектрические явления. Как правило, ∆φ'' << ∆φ'. Если, например, ввести в соприкосновение три разнородных проводника, имеющих одинаковую температуру, то разность потенциалов между концами разомкнутой цепи равна алгебраической сумме скачков потенциала во всех контактах. Она не зависит от природы промежуточных проводников. То же самое справедливо при любом числе промежуточных звеньев: разность потенциалов между концами цепи определяется разностью работ выхода для металлов, образующих крайние звенья цепи.
Значения внешней контактной разности потенциалов колеблются для различных пар металлов от нескольких десятых вольта до нескольких вольт. Мы рассмотрели контакт двух металлов. Однако контактная разность потенциалов возникает и на границе между металлом и полупроводником, а также на границе между двумя полупроводниками.
Для замкнутой цепи, составленной из произвольного числа разнородных металлов и полупроводников, с одинаковой температурой всех спаев, сумма скачков потенциалов будет равна нулю. Поэтому ЭДС в цепи возникнуть не может.
15.4.3. Термоэлектрические явления
Термоэлектрическими называют такие явления, в которых проявляется специфическая связь между тепловыми и электрическими процессами в металлах и полупроводниках.
Явление Зеебека. Зеебек(1821 г) обнаружил, что если спаи 1 и 2 двух разнородных металлов, образующих замкнутую цепь (рис.15.17), имеют неодинаковую температуру, то в цепи течет электрический ток. Изменение знака у разности температур спаев сопровождается изменением направления тока.
В замкнутой цепи для многих пар металлов электродвижущая сила прямо пропорциональна разности температур в контактах
Рис. 15.17.
Етермо = α AB (T2 – T1) | (15.13) |
Эта ЭДС называется термоэлектродвижущей силой. Причина возникновения термоэлектродвижущей ЭДС можно понять с помощью формулы (15.12), которая определяет внутреннюю контактную разность потенциалов на границе двух металлов. Так как положение уровня Ферми зависит от температуры, то при разных температурах контактов разными будут и внутренние контактные разности потенциалов. Поэтому сумма скачков потенциала на контактах будет отлична от нуля, что и приводит к возникновению термоэлектрического тока. При градиенте температуры происходит также диффузия электронов, которая тоже обуславливает термо-ЭДС.
Явление Зеебека используется:
1) для измерения температуры с помощью термопар – датчиков температур, состоящих из двух соединенных между собой разнородных металлических проводников. Таких спаев в термопаре может быть несколько;
2) для создания генераторов тока с прямым преобразованием тепловой энергии в электрическую. Их используют, в частности, на космических кораблях, спутниках в качестве бортовых источников электроэнергии;
3) для измерения мощности инфракрасного, видимого и ультрафиолетового излучений.
Явление Пельтье. Это явление (1834 г.) можно считать обратным термоэлектричеству. Если через термопару пропустить электрический ток от постороннего источника (рис. 15.18), то один из спаев будет нагреваться, а другой охлаждаться. Теплота, выделенная на одном спае (+Q), будет равна теплоте, поглощенной на другом (-Q). При изменении направления тока роль спаев изменится.
Количество выделившейся или поглощенной теплоты пропорционально заряду q, протекшему через спай:
Рис. 15.18.
Q = Пq | (15.14) |
где П — коэффициент Пельтье, зависящий от соприкасающихся материалов и их температуры.
Закономерность (15.14) позволяет определить количество теплоты Пельтье, которое отлично от количества теплоты Джоуля — Ленца, так как в последнем случае оно пропорционально квадрату силы тока.
Явление Пельтье используют для создания холодильников, термостатов, установок микроклимата и т. п. Изменяя силу тока в этих устройствах, можно регулировать количество выделяемой или поглощаемой теплоты, а изменяя направление тока, можно преобразовать холодильник в нагреватель и наоборот.
В случае контакта двух веществ с одинаковым видом носителей тока (металл — металл, металл — полупроводник n-типа, два полупроводника n-типа, два полупроводника р-типа) эффект Пельтье имеет следующее объяснение. Носители тока (электроны или дырки) по разные стороны от спая имеют различную среднюю энергию (имеется в виду полная энергия — кинетическая плюс потенциальная). Если носители, пройдя через спай, попадают в область с меньшей энергией, они отдают избыток энергии кристаллической решетке, в результате чего спай нагревается. На другом спае носители переходят в область с большей энергией; недостающую энергию они заимствуют у решетки, что приводит к охлаждению спая.
В случае контакта двух полупроводников с различным типом проводимости эффект Пельтье имеет другое объяснение. В этом случае на одном спае электроны и дырки движутся навстречу друг другу. Встретившись, они рекомбинируют: электрон, находившийся в зоне проводимости n-полупроводника, попав в р-полупроводник, занимает в валентной зоне место дырки. При этом высвобождается энергия, которая требуется для образования свободного электрона в n-полу-проводнике и дырки в р-полупроводнике, а также кинетическая энергия электрона и дырки. Эта энергия сообщается кристаллической решетке и идет на нагревание спая. На другом спае протекающий ток отсасывает электроны и дырки от границы между полупроводниками. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок (при этом электрон из валентной зоны р-полупроводника переходит в зону проводимости n-полупроводника). На образование пары затрачивается энергия, которая заимствуется у решетки, — спай охлаждается.