Г. Г. Филипенко квантовая механика. Введение в начальные условия физики твердого тела. Электроны проводимости вносят низкий вклад в теплоемкость металла закон
Вид материала | Закон |
- Рабочая программа дисциплины «теория представлений групп в физике твердого тела», 52.74kb.
- Учебное пособие для студентов механико-математического факультета специальностей «механика»,, 1029.53kb.
- Рабочая программа дисциплины «Физика твердого тела», 72.99kb.
- Программа курса «квантовая химия твердого тела», 18.91kb.
- Программа курса общей физики для I курса этф осенний семестр 2011, 58.04kb.
- Малюкин Сергей Яковлевич. Физика 11 класс моу «сош с. Ивантеевка» Ивантеевский район, 102.46kb.
- Физика (греч ta physika, от physis природа), наука о природе, изучающая простейшие, 51.33kb.
- 14. Элементы квантовой статистики и зонной теории твердого тела, 460.81kb.
- Рабочая программа дисциплины «теория групп», 56kb.
- Программа-минимум кандидатского экзамена по специальности 01. 04. 02 «Теоретическая, 115.8kb.
Г.Г.ФИЛИПЕНКО
КВАНТОВАЯ МЕХАНИКА. ВВЕДЕНИЕ В НАЧАЛЬНЫЕ УСЛОВИЯ ФИЗИКИ ТВЕРДОГО ТЕЛА.
Электроны проводимости вносят низкий вклад в теплоемкость металла (закон Дюлонга-Пти).
Теоретический же расчет по модели Друде показывает,что вклад электронов в теплоемкость должен быть значительным.
Атомы металлов плотно упакованы, но не в один, а в несколько типов упаковок - кристаллические решетки. Значит кроме плотной упаковки, при формировании кристаллической решетки металла, играют роль также и химические свойства атомов (атомных остовов).
Металлическая связь объясняется объединением нескольких внешних электронов атомов металла в общей, для этих электронов, зоне проводимости.
Существование зоны доказано в известном опыте, когда возникал кратковременный ток при торможении предварительно раскрученной катушки, а число электронов проводимости определено из опытов Холла.
Как определить “ химические” свойства атомного остова? Для этого определим число гибридных орбиталей атомного остова, окруженного и притягиваемого зоной проводимости.
У алмаза плотность упаковки атомов в кристаллической решетке равна 34 процентам, а координационное число (число ближайших атомов для центральноизбранного) равно 4. На одну гибридную орбиталь атома алмаза приходится 34 разделить на 4 равно 8,5 процентов.
По аналогии для атома натрия 68 разделить на 8 равно 8,5 процентов. Отсюда число гибридных орбиталей для атомов плотнейших упаковок будет равно 74 разделить на 8,5 равно
9 шт. (орбиталей).
Изложено в работе “К вопросу о металлической связи в плотнейших упаковках химических элементов”
ссылка скрыта
ссылка скрыта (in English)
Электроны внешних оболочек или подоболочек сначала заполняют гибридные орбитали, а оставшиеся электроны размещаются в зоне проводимости. Предположительно, в
реальном пространстве, зона проводимости должна находится в районе поверхности ячейки Вигнера-Зейтца. Грубо, она напоминает собой пчелиные соты.
Поэтому электроны проводимости вносят низкий вклад в теплоемкость металла, т.к. они по сути находятся в пространстве двумерном со сложной поверхностью. Здесь ошибка Друде. А периодичность для электрона проводимости в кристалле связана не столько с постоянной решетки , сколько со стереометрией гибридных (валентных) орбиталей атомных остовов. Смотри осциляции в опытах де-Гааза-ван-Альфена по исследованию поверхности Ферми.
С учетом вышеизложенного ясно, что механизмы заполнения и расчетов электронных уровней для атомных остовов и для зоны проводимости должны быть различными.
Положительным в статье видится то, что расчеты свойств материалов можно вести сразу для химического элемента, а не для пустого куба Борна-Кармана. Все это наверное диковато для квантового механика , так будем терпимы к инакомыслящим.
ГРОДНО январь 2004.