Т. С. Рамазанов доктор физико-математических наук, профессор, Казну им. Аль-Фараби, г. Алматы; > С. К. Тлеукенов доктор физико-математических наук, профессор, пгу им. С. Торайгырова, г. Павлодар; > А. М. Мубараков

Вид материалаУчебник

Содержание


3.4.5 Определение удельного заряда электрона. Ускорители заряженных частиц
Линейный ускоритель.
Линейный резонансный ускоритель.
Р в изотропном диэлектрике всегда направлена по полю Е
Подобный материал:
1   ...   19   20   21   22   23   24   25   26   ...   48

3.4.5 Определение удельного заряда электрона. Ускорители заряженных частиц


Удельный заряд электрона (т. е. отношение е/т) был впервые измерен Томсоном в 1897 г. с помощью разрядной трубки, изображенной на рис. 74.1. Выходящий из отверстия в аноде А электронный пучок проходил между пластинами плоского конденсатора и попадал на флуоресцирующий экран, создавая на нем светящееся пятно. Подавая напряжение на пластины конденсатора, можно было воздействовать на пучок практически однородным электрическим полем. Трубка помещалась между полюсами электромагнита, с помощью которого можно было создавать перпендикулярное к электрическому полю, однородное магнитное поле (область этого поля обведена на рисунке - 3.36. пунктирной окружностью). При выключенных полях, пучок попадал на экран в точке О. Каждое из полей в отдельности, вызывало смещение пучка в вертикальном направлении.




Рисунок - 3.36


Включение магнитного поля вызывает действие на движущийся электрон силы Лоренца, которое искривляет траекторию движения: evB = mv2/R. Отсюда, по следу на экране, можно было измерить вызванное магнитным полем смещение пучка –R. Затем, одновременно с магнитным полем, возбуждается между пластинами B электростатическое поле напряженности Е и такого направления, чтобы электрическая сила еЕ, действующая на электрон, была направлена противоположно магнитной силе (в нашем случае электрическая сила должна быть направлена вверх). Электрическое поле подбиралось такой величины, чтобы пучок электронов вовсе не испытывал отклонения, что будет иметь место при равенстве по величине электрической и магнитной сил: eE= - evВ. Подставляя это значение v, найдем:


е/m = E/В2R

(3.112).


Таким образом, по напряженности полей Е и В и радиусу кривизны R был определен Дж.Дж.Томсоном удельный заряд электрона - е/m.

Действие магнитных полей на движущиеся заряды используется также в работе ускорителей. Ускорителями заряженных частиц называются устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки заряженных частиц с высокими энергиями (электронов, протонов, мезонов и т.д.).

Любой ускоритель характеризуется типом ускоряемых частиц, энергией, сообщаемой частицам, разбросом частиц по энергиям и интенсивностью пучка. Ускорители делятся на непрерывные (из них выходит равномерный по времени пучок) и импульсные (из них частицы вылетают порциями — импульсами). Последние характеризуются длительностью импульса. По форме траектории и механизму ускорения частиц ускорители делятся на линейные, циклические и индукционные. В линейных ускорителях траектории движения частиц близки к прямым линиям, в циклических и индукционных — траекториями являются окружности или спирали.

Рассмотрим некоторые типы ускорителей заряженных частиц.

Линейный ускоритель. Ускорение частиц осуществляется электростатическим -полем, создаваемым, например, высоковольтным генератором Ван-де-Граафа. Заряженная частица проходит поле однократно: заряд Q, проходя разность потенциалов (φ12), приобретает энергию W=Q(φ12), Таким способом частицы ускоряются до «10 МэВ. Их дальнейшее ускорение с помощью источников постоянного напряжения невозможно из-за утечки зарядов, пробоев и т. д.

Линейный резонансный ускоритель. Ускорение заряженных частиц осуществляется переменным электрическим полем сверхвысокой частоты, синхронно изменяющимся с движением частиц. Таким способом протоны ускоряются до энергий порядка десятков МэВ, электроны — до десятков ГэВ.

Циклотрон — циклический резонансный ускоритель тяжелых частиц (протонов, ионов). Его принципиальная схема приведена на рисунке - 3.38. Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода (1 и 2) в виде полых металлических полуцилиндров, или дуантов. К дуантам приложено переменное электрическое поле. Магнитное поле, создаваемое электромагнитом, однородно и перпендикулярно плоскости дуантов.

Если заряженную частицу ввести в центр зазора между дуантами, то она, ускоряемая электрическим и отклоняемая магнитным полями, войдя в дуант 1, опишет полуокружность, радиус которой пропорционален скорости частицы.

К моменту ее выхода из дуанта 1 полярность напряжения изменяется (при соответствующем подборе изменения напряжения между дуантами), поэтому частица вновь ускоряется и, переходя в дуант 2, описывает там уже полуокружность большего радиуса и т. д. Для непрерывного ускорения частицы в циклотроне необходимо выполнить условие синхронизма (условие «резонанса») — периоды вращения частицы в магнитном поле и колебаний электрического поля должны быть равны. При выполнении этого условия частица будет двигаться по раскручивающейся спирали, получая при каждом прохождении через зазор дополнительную энергию. На последнем витке, когда энергия




Рисунок - 3.38


частиц и радиус орбиты доведены до максимально допустимых значений, пучок частиц посредством отклоняющего электрического поля выводится из циклотрона. Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью. Это приводит к увеличению периода обращения он пропорционален массе), и синхронизм нарушается. Поэтому циклотрон совершенно неприменим для ускорения электронов (при Е = 0,5 МэВ m = 2m0, при Е=10 МэВ т = 28т0).

Ускорение релятивистских частиц в циклических ускорителях можно, однако, осуществить, если применять предложенный в 1944 г. советским физиком В. И. Векслером (1907—1966) и в 1945 г. американским физиком Э. Мак-Милланом принцип автофазировки. Его идея заключается в том, что для компенсации увеличения периода вращения частиц, ведущего к нарушению синхронизма, изменяют либо частоту ускоряющего электрического, либо индукцию магнитного полей, либо то и другое. Принцип автофазировки используется в фазотроне, синхротроне и синхрофазотроне.

Фазотрон (синхроциклотрон) — циклический резонансный ускоритель тяжелых заряженных частиц (например, протонов, ионов, a-частиц), в котором управляющее магнитное поле постоянно, а частота ускоряющего электрического поля медленно изменяется с периодом. Движение частиц в фазотроне, как и в циклотроне, происходит по раскручивающейся спирали. Частицы в фазотроне ускоряются до энергий, примерно равных 1 ГэВ (ограничения здесь определяются размерами фазотрона, так как с ростом скорости частиц растет радиус их орбиты).

Синхротрон — циклический резонансный ускоритель ультрарелятивистских электронов, в котором управляющее магнитное поле изменяется во времени, а частота ускоряющего электрического поля постоянна. Электроны в синхротроне ускоряются до энергий 5—10 ГэВ.

Синхрофазотрон — циклический резонансный ускоритель тяжелых заряженных частиц (протонов, ионов), в которых объединяются свойства фазотрона и синхротрона. В них управляющее магнитное поле и частота ускоряющего электрического поля одновременно изменяются во времени так, чтобы радиус равновесной орбиты частиц оставался постоянным. Протоны ускоряются в синхрофазотроне до энергий 500 ГэВ.

Бетатрон — циклический индукционный ускоритель электронов, в котором ускорение осуществляется вихревым электрическим полем, индуцируемым переменным магнитным полем, удерживающим электроны на круговой орбите. В бетатроне в отличие от рассмотренных выше ускорителей не существует проблемы синхронизации. Электроны в бетатроне ускоряются до энергий 100 МэВ. При W> 100 МэВ режим ускорения в бетатроне нарушается электромагнитным излучением электронов. Особенно распространены бетатроны на энергии 20—50 МэВ.


3.5 Магнитные свойства вещества

3.5.1 Магнетики. Магнитные свойства веществ

В предыдущей главе предполагалось, что провода, по которым текут токи, создающие магнитное поле, находятся в вакууме. Если несущие ток провода находятся в какой-либо среде, магнитное поле изменяется. Это объясняется тем, что всякое вещество является магнетиком, т. е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Намагниченное вещество создает магнитное поле В', которое накладывается на обусловленное токами поле В0. Оба поля в сумме дают результирующее поле


В=В0 + В'

(3.113).


Это явление было впервые обнаружено Ампером, который обнаружил, что внесение железного сердечника в соленоид равносильно увеличению числа ампер-витков этого соленоида. Впоследствии было установлено, что индукция В магнитного поля в веществе может быть и больше и меньше, чем индукция B0 того же поля в вакууме. Происходит это потому, что каждое вещество в большей или меньшей степени обладает своими магнитными В'.

Вещества, способные изменять параметры магнитного поля, принято называть магнетиками. Для характеристики магнитных свойств веществ введена величина μ = B/B0, называемая магнитной проницаемостью этого вещества. По значению магнитной проницаемости все магнетики делятся на три группы.

а) Поскольку внутреннее магнитное поле в диамагнетике направлено против внешнего поля, модуль индукции результирующего поля в диамагнетике меньше, чем модуль индукции поля в вакууме, т. е. В<В0. Поэтому вещества, у которых μ<.l, называют диамагнетиками.К ним относятся, например, элементы Bi, Cu, Ag, Au, Hg, Be, CI,инертные газы и другие вещества. Магнитная проницаемость μ диамагнетика не зависит от индукции В0 внешнего магнитного поля.

б) Парамагнитные вещества состоят из атомов, в которых орбитальные магнитные моменты электронов не скомпенсированы. Поэтому атомы диамагнетика имеют отличные от нуля магнитные моменты. Однако при отсутствии внешнего магнитного поля тепловое движение атомов приводит к хаотическому расположению их магнитных моментов, вследствие чего любой объем парамагнетика в целом магнитным моментом не обладает.

При внесении парамагнетика во внешнее магнитное поле его атомы в большей или меньшей степени (в зависимости от индукции этого поля) располагаются так, что их магнитные моменты ориентируются по направлению внешнего поля. В результате в парамагнетике возникает внутреннее магнитное поле, индукция которого В совпадает по направлению с индукцией В„ внешнего поля. Поэтому модуль индукции В результирующего магнитного поля в парамагнетике больше, чем модуль индукции В0 поля в вакууме, т. е. В>В0. Поэтому парамагнетиками называют вещества, у которых μ>1. К ним, в частности, относятся Na, Mg, К, Са, Al, Mn, Pt, кислород и многие другие элементы, а также растворы некоторых солей. Магнитная проницаемость μ парамагнетика, так же как и диамагнетика, не зависит от индукции В0 внешнего магнитного поля.

Следует отметить, что значение μ у диа- и парамагнетиков отличается от единицы очень мало, всего на величину порядка 10-5— Ю-6, поэтому диа- и парамагнетики относятся к слабомагнитным веществам.

в) В отличие от диа- и парамагнетиков, у которых магнитные свойства определяются орбитальными магнитными моментами атомных электронов, магнитные свойства ферромагнетиков обусловлены спиновыми магнитными моментами электронов. Ферромагнитные вещества (всегда имеющие кристаллическую структуру) состоят из атомов, в которых не у всех электронов спиновые магнитные моменты взаимно скомпенсированы.

В ферромагнетике существуют области самопроизвольного (спонтанного) намагничения, которые называют доменами. (Размер доменов порядка 10-4 — 10-7 м.) В каждом домене спиновые магнитные моменты атомных электронов имеют одинаковую ориентацию, вследствие чего домен оказывается намагниченным до состояния насыщения. Поскольку при отсутствии внешнего магнитного поля магнитные моменты доменов ориентированы хаотически, ферромагнитный образец в таких условиях в целом не намагничен.

Под действием внешнего магнитного поля происходит ориентация магнитных моментов доменов по направлению этого поля. В результате в ферромагнетике возникает сильное внутреннее магнитное поле с магнитной индукцией В', совпадающей по направлению с магнитной индукцией внешнего поля В0. Поэтому модуль индукции В результирующего магнитного поля в ферромагнетике много больше, поле в вакууме, т. е. В»В0. Когда все магнитные моменты доменов под действием внешнего магнитного поля будут ориентированы по полю, наступает насыщение ферромагнитного образца.

По достижении определенных для каждого вещества температурных точках, называемых точкой Кюри выше, доменная структура разрушается, и ферромагнетик теряет присущие ему свойства.

Таким образом, вещества, у которых μ»1, называют ферромагнетиками. К ним относятся элементы Fe, Co, Ni, Gd и многие сплавы. Во внешнем магнитном поле ферромагнитный образец ведет себя подобно парамагнетику. Однако магнитная проницаемость μ ферромагнетика зависит от напряженности Н внешнего магнитного поля и изменяется в довольно широких пределах, вследствие чего зависимость В = f(H) является нелинейной. Значения μ у некоторых сплавов достигают десятков тысяч. Поэтому ферромагнетики относятся к сильномагнитным веществам.

Для каждого ферромагнетика существует определенная температура, называемая точкой Кюри, при нагревании выше которой данное вещество теряет ферромагнитные свойства и превращается в парамагнетик. Например, для Fe точка Кюри равна 1043 К, а для Ni - 631 К.

Для объяснения процесса намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые токи (молекулярные токи). Каждый такой ток обладает магнитным моментом и создает в окружающем пространстве магнитное поле. В отсутствие внешнего поля молекулярные токи ориентированы беспорядочным образом, вследствие чего обусловленное ими результирующее поле равно нулю. В силу хаотической ориентации магнитных моментов отдельных молекул суммарный магнитный момент тела также равен нулю. Под действием поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается — его суммарный магнитный момент становится отличным от нуля. Магнитные поля отдельных молекулярных токов в этом случае уже не компенсируют друг друга и возникает поле В'. Намагничение магнетика естественно характеризовать магнитным моментом единицы объема. Эту величину называют намагниченностью и обозначают буквой J. Намагниченность принято связывать не с магнитной индукцией, а с напряженностью поля. Полагают, что в каждой точке


J = χH

(3.114),


где χ — характерная для данного магнетика величина, называемая магнитной восприимчивостью. Опыт показывает, что для слабомагнитных (неферромагнитных) веществ, при не слишком сильных полях, χ не зависит от Н. С магнитной проницаемостью они связаны следующим образом:


μ= 1+χ.

(3.115).


В отличие от диэлектрической восприимчивости, которая может иметь лишь положительные значения (поляризованность Р в изотропном диэлектрике всегда направлена по полю Е), магнитная восприимчивость χ бывает как положительной, так и отрицательной. Поэтому магнитная проницаемость μ может быть как больше, так и меньше единицы.

Намагниченность слабомагнитных веществ изменяется с напряженностью поля линейно. Намагниченность ферромагнетиков з, висит от Н сложным образом. На рисунке - 3.39 дана кривая намагничения ферромагнетика, магнитный момент которого первоначально, был равен нулю. Уже в полях порядка нескольких эрстед (~100 А/м) намагниченность J достигает насыщения. Основная кривая намагничения на диаграмме В — Н приведена рис. 59.2 (кривая 0—1). По достижении насыщения В продолжает расти с Н по линейно закону. Если довести намагничение до насыщения (точка 1 на рисунке - 3.40) и затем уменьшать напряженность магнитного поля, то индукция В следует не по первоначальной кривой 0—1, а изменяется в соответствии с кривой 1—2. В результате, когда напряженность внешнего поля станет равной нулю (точка 2), намагничение не исчезает и характеризуется величиной Вr, которая называется остаточной индукцией. Намагниченность имеет при этом значение Jr, называемое остаточной намагниченностью.






Рисунок - 3.39

Рисунок - 3.40


Индукция В обращается в нуль лишь под действием поля Нс, имеющего направление, противоположное полю, вызвавшему намагничение. Напряженность Нс называется коэрцитивной силой.

Существование остаточной намагниченности делает возможным изготовление постоянных магнитов, т. е. тел, которые без затраты энергии на поддержание макроскопических токов обладают магнитным моментом и создают в окружающем их пространстве магнитное поле. Постоянный магнит тем лучше сохраняет свои свойства, чем больше коэрцитивная сила материала, из которого он изготовлен.

При действии на ферромагнетик переменного магнитного поля индукция изменяется в соответствии с кривой /—23—4—5—1 (рисунок - 3.40), которая называется петлей гистерезиса (аналогичная петля получается и на диаграмме J—H). Если максимальные значения Н таковы, что намагниченность достигает насыщения, получается так называемая максимальная петля гистерезиса (сплошная петля на рисунок - 3.40). Если при амплитудных значениях Н насыщение не достигается, получается петля, называемая частным циклом (пунктирна петля на рисунке). Частных циклов существует бесконечное множество, все они лежат внутри максимальной петли гистерезис. Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией Н, оно в сильной мере завис от предыстории образца — от того, в каких полях он побыл прежде.

В связи с неоднозначностью зависимости В от Н понятие магнитной проницаемости применяется лишь к основной кривой намагничения. Магнитнная проницаемость ферромагнетиков μ, следовательно, и магнитная восприимчивость χ является функцией напряженности поля. На рисунке - 3.41 изображена основная кривая намагничения. (ведем из начала координат прямую линию, проходящую через произвольно точку кривой. Тангенс угла наклона : прямой пропорционален отношению В/Н, т. е. магнитной проницаемости μ, для соответствующего значения напряженности Н. При увеличении Н от нуля угол наклона (а значит и μ) сначала растет. В точке 2 он достигает максимума (прямая О является касательной к кривой), а затем убывает. На рисунке - 3.41,б дан график зависимости μ от Н. Из рисунка видно, что максимальное значение проницаемости достигается несколько раньше насыщения. При неограниченном возрастании Н проницаемо асимптотически приближается к единице. Это следует из того, / в выражении μ = 1 - J/H не может превысить значения 1.




Рисунок - 3.41


Величины Вr (или Jr), Нс и μ являются основными характеристиками ферромагнетика. Если коэрцитивная сила Нс имеет большую величину ферромагнетик называется жестким. Для него характерно широкая петля гистерезиса. Ферромагнетик с малой Нс (и соответственно узкой петлей гистерезиса) называется мягким. В зависимости от назначения берутся ферромагнетики с той или иной характеристикой. Так, для постоянных магнитов употреблял жесткие ферромагнетики, а для сердечников трансформаторов мягкие. Наличие точки Кюри у ферромагенитков можно понять, учитывая, что атомы участвуют в тепловом движении: пока температура небольшая, атомы сохраняют параллельную ориентацию своих магнитных моментов в пределах доменов. Но при увеличении температуры увеличиваются и тепловое движение Когда вещество достигает определенного для данного вещества температуры, тепловое движение разрушает эту ориентацию – домен исчезает. Далее ферромагенитик ведет себя как парамагнетик.

Основы теории ферромагнетизма были созданы Я. И. Френкелем и В. Гейзенбергом в 1928 г. В наше время магнетики, их магнитные свойства широко используются в науке и технике.