Модернизация платформы 13-9004

Курсовой проект - Транспорт, логистика

Другие курсовые по предмету Транспорт, логистика

?е диаметры пружин, м:

 

;

;

 

м;

м.

Количество рабочих витков наружней и внутренней пружин:

 

;

;

 

;

.

Высота наружной и внутренней пружин в сжатом состоянии до соприкосновения витков, м:

;

;

 

м;

м.

Расчётный (максимальный) статический прогиб, м:

 

;

 

м.

Высота наружной и внутренней пружин в свободном состоянии, м:

 

;

;

 

м;

м.

Для выравнивания высот наружной и внутренней пружин необходимо предусмотреть прокладку под внутреннюю пружину толщиной, м:

 

;

 

м.

Во избежание потери устойчивости или значительного искривления пружины при сжатии необходимо выполнения следующего условия:

? 3,5.

 

В нашем случае условие устойчивости определяем по параметрам наружной пружины, определяющей устойчивость гнезда в целом:

 

? 3,5;

 

? 3,5.

Вывод: таким образом, комплект, состоящий из семи двухрядных пружин, будет устойчивым.

Жёсткости наружной и внутренней пружин определяются так, Н/м:

 

;

;

 

Н/м;

Н/м.

Суммарная жёсткость двухрядной пружины составит, Н/м:

 

;

 

Н/м.

Погрешность по сравнению с необходимой жёсткостью составляет, %:

 

;

;

 

%.

Вывод: расчёт является корректным, так как полученная погрешность не превышает 5%.

 

3.5Гасители колебаний

 

При движении вагона по периодическим неровностям пути (стыкам рельсов, например) со скоростью, когда частоты вынужденных и собственных колебаний близки по величине, могут возникать большие амплитуды колебаний кузова на рессорах (резонанс), если в системе рессорного подвешивания отсутствуют или малы силы сопротивления. Поэтому для гашения резонансных колебаний в систему рессорного подвешивания вводят специальные гасители, которые позволяют снизить амплитуды и ускорения колебательного движения, а следовательно, уменьшить воздействие динамических сил на элементы вагона и перевозимый в нём груз. Многочисленные разновидности конструкций гасителей колебаний, применяемых в подвижном составе, можно объединить в две большие группы: фрикционные и вязкого сопротивления. Рассмотрим только фрикционные гасители колебаний.

Фрикционные клиновые гасители колебаний широко применяют в тележках грузовых вагонов. Так, в двухосных тележках типа ЦНИИ-Х3 фрикционный гаситель колебаний состоит из двух фрикционных клиньев 2 (см. рис. 21), размещённых между наклонными поверхностями концов надрессорной балки 1 и фрикционными планками 3, укреплёнными на колонках 4 боковой рамы тележки. Клинья опираются на двухрядные цилиндрические пружины 5

 

Рис. 21Фрикционный гаситель колебаний

 

Работа таких гасителей заключается в следующем. При вертикальных колебаниях надрессорной балки 1 совместно с обрессоренными массами вагона фрикционные клинья 2 перемещаются вниз и вверх относительно фрикционных планок 3. В результате между клиньями и планками возникают силы трения, создающие сопротивление колебательному движению. При этом величина силы трения прямо пропорциональна прогибу пружин и возрастает с его увеличением, так как клинья прижимаются с большей силой. Работа сил трения преобразуется в тепловую энергию, которая рассеивается в окружающую среду необратимо. Такого типа гаситель называют фрикционным с переменной силой трения, зависящей от прогиба.

 

3.6 Установление параметров гасителей колебаний

 

Расчёт фрикционных гасителей колебаний практически сводится к определению необходимых углов наклона поверхностей трения и подбора трущихся пар с соответствующими коэффициентами трения.

При расчёте рассматривается равновесие надрессорной балки и клиньев под действием приложенных к ним сил.

На рис. 22 приведена расчётная схема клинового гасителя, на которой обозначены:

- угол наклона к вертикали трущихся поверхностей надрессорной балки и фрикционных клиньев;

- угол наклона к вертикали трущихся поверхностей фрикционных планок, укреплённых на боковых рамах тележки и клиньев;

- суммарная жёсткость основных пружин рессорного комплекта, на которые передаёт нагрузку надрессорная балка;

- жёсткость пружины, поддерживающей фрикционный клин.

 

Рис. 22 Схема клинового гасителя колебаний

 

При расчёте параметров фрикционного клинового гасителя колебаний вагона необходимо руководствоваться Нормами для расчёта и проектирования новых и модернизируемых вагонов железных дорог МПС колеи 1520 мм (несамоходных).

Исходные данные:

вес брутто вагона т;

длина кузова вагона м;

база вагона м;

база тележки м;

масса надрессорного строения т = 87200 кг;

вес надрессорного строения Н;

статический прогиб рессорного подвешивания под нагрузкой брутто = 0,05 м.

Определение параметров гасителя колебаний.

Половина длины кузова, м:

 

;

 

м.

Половина базы вагона, м:

 

;

 

м.

Жёсткость рессорного подвешивания одной тележки при деформации рессор в вертикальном направлении, Н/м:

 

;

 

Н/м.

Масса надрессорного строения, т:

,

 

где - масса тележки, = 4,9 т;

- масса надрессорной балки, = 0,5 т;

т = 85200 кг.

Момент инерции массы кузова относительно поперечной горизонтальной оси, проходящей через е