Методика обучения школьников применению теории к решению задач на вычисление и доказательство по теме "Многоугольники"

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

; половина произведения стороны в квадрате на синус 60; половина произведения большей стороны на высоту, опущенную из тупого угла или формула Герона; произведение его основания на высоту; половина произведения диагоналей; произведение средней линии трапеции на высоту; произведение полусуммы её оснований на высоту, содержащую боковую сторону.

Дополнительная задача: Найдите площадь равнобедренной трапеции с диагональю 20 мм., высотой 16мм., и ответ выразите в квадратных сантиметрах.

(Краткое решение: подкоренное выражение (202 - 162) умножить на высоту 16, т.е.2*6*16 равно 192 мм2. Ответ: 1,92 см2).

. Рекламная пауза. Каждый ученик по очереди выходит к доске, схематически чертит один из изученных углов, одновременно рассказывая определение и свойства (острый, тупой, развернутый, внешний, вертикальные, смежные, внутренние накрест лежащие, внутренние односторонние, соответственные). И угол в 30,45,60 с помощью треугольника и линейки (прямоугольный треугольник с катетом в два раза меньшим гипотенузы, прямоугольный равнобедренный треугольник).

. Закрепление знаний. Конкурс "Самый находчивый". Каждый правильный ответ - 1 балл, если утверждение доказано - 2 балла, если четко сформулировано - 3 балла.

Задание 1. Какое слово из перечисленных (квадрат, параллелограмм, прямоугольник, ромб) является обобщающим для всех остальных и почему? (параллелограмм, т.к. остальные фигуры являются параллелограммами по определению).

Задание 2. Можно ли описать окружность около любого четырехугольника, если сумма его противоположных углов равна 180 и почему? (можно, потому что вписанные углы опираются на дуги, сумма которых равна 360).

Задание 3. При каком условии можно вписать в окружность выпуклый четырехугольник и почему? (если суммы противоположных сторон равны; доказывается с помощью равных отрезков касательных, проведенных из одной вершины).

Задание 4. Как относятся площади треугольников, если угол одного треугольника равен углу другого треугольника и какая теорема доказывается с помощью этого отношения? (как произведение сторон, заключающие равные углы. Теорема: отношение площадей двух подобных треугольников равно квадрату коэффициента подобия).

Задание 5. Назовите формулу для вычисления суммы углов выпуклого n-угольника, и выведите её? ( (n-2) *180. Любой n-угольник содержит n-2 треугольника, сумма углов, которых равна сумме углов n-угольника).

. Подведение итогов урока. Какие затруднения возникли при выполнении практической работы? По наличию "+" и количеству баллов выставляется первая оценка по результатам фронтальной устной работы и конкурса "Самый находчивый", а на следующем уроке выставляется вторая оценка по результатам практической работы.

. Домашнее задание. В ходе урока каждый из вас выявил пробелы в своих знаниях, дома необходимо каждому индивидуально поработать над устранением этих пробелов. Повторить пункт 108 (Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности).

7. Задачи по теме "Многоугольники" в материалах ЕГЭ по математике

 

Задачи по теме "Многоугольники" традиционно встречаются на выпускных экзаменах и в 9 классах и в 11 классах.

С 2008 года математика включена в список предметов, по которым государственная итоговая аттестация по курсу основной школы стала проводиться в новой форме.

Особенности содержания и структуры экзаменационной работы определяется целью проведения экзамена - оценить образовательную подготовку выпускников 9-х классов по курсу геометрии с целью их итоговой аттестации.

Приведем примеры тестов по геометрии.

Все задания в тесте распределены по уровню сложности и видам деятельности.

Вариант 1. ЧАСТЬ 1

1. В ромбе ABCD проведена диагональ BD. Найдите АВС если известно, что ABD = 20.

) 202) 703) 40 4) 140

. Четырехугольник ABCD - трапеция. Используя данные, указанные на рисунке, найдите длину отрезка AD.

) 152) 163) 17 4) 22

. Найдите сторону ВС треугольника BCD, если известно, что CD= =, AB = 30, a D = 45.

Ответ:

ЧАСТЬ 2

. В прямоугольнике ABCD проведены биссектрисы углов А и D, которые пересекаются в точке на стороне ВС. Найдите периметр прямоугольника ABCD, если АВ =8.

Ответ:

. В квадрате ABCD точка К - середина стороны ВС, точка М - середина стороны АВ. Докажите, что прямые АК и MD взаимно перпендикулярны, а треугольники АЕМ (Е - точка пересечения прямых АК и MD) и АВК подобны.

ЧАСТЬ 3

  1. В равнобедренный треугольник ABC с основанием ВС вписана окружность. Она касается стороны АВ в точке М. Найдите радиус окружности, если АМ=12 и ВМ=18.

Высоты треугольника ABC пересекаются в точке Н, а медианы - в точке М. Точка К - середина отрезка МН. Найдите площадь треугольника АКС, если известно, что AB=18, СН=12, BAC = 45.

Вариант 2

ЧАСТЬ 1

. Диагональ трапеции образует с меньшим основанием угол, равный 42. Найдите величину угла, который эта диагональ образует с большим основанием. 1) 212) 583) 424) 138

. Используя данные, указанные на рисунке, найдите площадь

параллелограмма.

) 21м2

  1. 42 м2
  2. 34 м2
  3. 68 м2

 

 

Используя данные, указанные на рисунке, найдите периметр четырехугольника ABCD, если известно, что АВС =CBD.

 

 

Ответ:.

Часть 2

10. Найдите площадь равнобедренной трапеции, если ее диагональ равна , а высота равна 2.

Ответ:

. В ромбе ABCD из вершины тупого угла В к стороне AD проведена высоты ВК и к стороне CD - высота ВР. Дока