Компьютерная схемотехника

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

ам часто также относят токи, потребляемые цифровой ИМС для двух её состояний: I1пот, I0пот, и потребляемую мощность Рпот.

Рпот представляет собой мощность, потребляемую микросхемой от источника питания в заданном режиме. Различают Р1пот и Р0пот, потребляемые ИМС в состояниях логических 1 и 0, а также среднюю потребляемую мощность

 

Рпот.ср = 0,5*( Р1пот + Р0пот).(6.1)

 

6.8 Входные и выходные токи, напряжения

 

I0вх предельный входной ток при сигнале 0 на входе;

I1вх предельный входной ток при сигнале 1 на входе;

U1вых минимальное выходное напряжение при логической 1 на выходе при заданном токе нагрузки;

U0вых максимальное выходное напряжение при сигнале 0 на выходе при заданном токе нагрузки;

I0вых max максимальный выходной ток при логическом нуле на выходе;

I1вых max максимальный выходной ток при логической единице на выходе.

 

6.9 Пороговые напряжения

 

Входное напряжение, при котором происходит резкое изменение выходного напряжения, называется порогом переключения Uпор. Амплитудная передаточная характеристика реального логического элемента в переходной области (штриховая линия) не имеет явно выраженного порога переключения (рисунок 6.1). Изменение выходного напряжения начинается при одном значении входного напряжения U0пор, а заканчивается при другом U1пор. Характеристика имеет зону неопределенности ?Uпор=U1пор-U0пор, что вызвано, в частности, переходом транзистора из режима отсечки в режим насыщения и наоборот.

Пороговое напряжение логического нуля U0пор наибольшее значение низкого уровня входного напряжения, при котором происходит переход из единичного состояния в нулевое (рисунок 6.1);

Пороговое напряжение логической единицы U1пор наименьшее значение высокого уровня входного напряжения, при котором происходит переход из нулевого состояния в единичное (рисунок 6.1).

Значение U0пор и U1пор отличаются на несколько десятых долей вольта, поэтому часто передаточная характеристика аппроксимируется, как показано на рисунке 6.4.

 

Рисунок 6.4

 

Теперь Uпор= U1пор= U0пор.

 

6.10 Допустимые значения основных параметров

 

Emin, Emax допустимые значения напряжения питания;

U1min, U0max допустимые значения уровней логических сигналов единицы и нуля;

Iвх.max, I0вых.max, I1вых.min допустимый входной и выходной токи в состоянии 0 и 1.

Существует еще ряд параметров, например, технико-экономических, которые приводятся в технической документации, прилагаемой к ИМС, и в справочниках.

 

7. БАЗОВЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

 

Для построения цифровых устройств наиболее широкое применение находят интегральные логические элементы на базе ТТЛ -, ТТЛШ -, ЭСЛ - и КМОП - технологий. Всякая микросхема, реализующая сложную функцию, по существу представляет совокупность элементов И-НЕ или ИЛИ-НЕ.

 

7.1 Базовый ТТЛ (ТТЛШ) - элемент И-НЕ

 

Простейший ТТЛ элемент, название которого расшифровывается как транзисторно-транзисторная логика, состоит из конъюнктора, выполненного на многоэмиттерном транзисторе VТм и транзисторного инвертора VT1 (рисунок 7.1).

 

Рисунок 7.1

 

При высоких уровнях напряжения на всех входах схемы (логические 1) все переходы эмиттер-база многоэмиттерного транзистора VTм смещаются в обратном направлении (заперты), а переход база-коллектор за счет напряжения +Епит в прямом (инверсное включение транзистора). Ток коллекторного перехода транзистора VТм, протекающий через переход эмиттер-база транзистора VТ1, вводит последний в режим насыщения. При этом с выхода снимается низкий уровень напряжения (логический нуль). Если хотя бы на один вход схемы поступит сигнал логического 0(низкий уровень напряжения), VТм открывается и на базу VТ1 подается низкий уровень напряжения. Последний закрывается и с выхода снимается высокий уровень сигнала (логическая единица). Таким образом, элемент реализует функцию И-НЕ ().

Выходное сопротивление рассмотренного элемента зависит от состояния транзистора VТ1. Когда он открыт, оно близко к нулю, а когда заперт Rвых?=R2.

Для повышения помехоустойчивости и увеличения нагрузочной способности ТТЛ элементы содержат дополнительные транзисторы (рисунок 7.2).

 

Рисунок 7.2

 

Подобная схема называется ТТЛ элементом со сложным инвертором, выполненном на трех транзисторах VT1, VT2 и VT3. Если на всех входах элемента присутствует логическая 1, то эмиттерный переход VТм заперт, а коллекторный открыт. Ток базы VТм через переход БКVTм поступает в базу VT1. В результате VT1 входит в режим насыщения. Положительным потенциалом, снимаемым с резистора R4, транзистор VT3 открывается и с выхода схемы снимается логический 0. Благодаря наличию диода VD транзистор VT2 при этом надежно закрыт.

Диод обеспечивает дополнительное положительное приращение напряжения на эмиттере VT2 и называется смещающим. Использование таких диодов один из типовых приемов интегральной технологии, позволяющий обеспечить надежное запирание выключенных транзисторов. Наличие запертого VT2 в коллекторной цепи открытого VT3 практически исключает потребление тока выходной цепью сложного инвертора в состоянии покоя (без нагрузки). Нагрузка, включенная ?/p>