Дослідження локальних формацій із заданими властивостями

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

?а визначити за допомогою поняття підпрямого добутку. Нагадаємо (див. Каргаполов і Мерзляков [1]), що підгрупа прямого добутку називається підпрямим добутком груп якщо проекція на збігається з Легко бачити, що тоді й тільки тоді, коли є добуток деякого кінцевого числа - груп.

Визначення 2.2. Клас називається замкнутим щодо операції або, більш коротко, - замкнутим, якщо

Формацію можна визначити тепер як клас груп, що одночасно - замкнуть і - замкнуть. - замкнутий клас згідно Гашюцу [3] називається насиченим. - замкнутий клас груп називається гомоморфом. Клас груп називається замкнутим щодо підгруп (нормальних підгруп), якщо він - замкнутий (відповідно - замкнуть).

Лема 2.1. . Якщо клас груп містить одиничну групу й - замкнуть, то

Доказ. Щодо операцій і твердження очевидно. Нехай довільний клас груп. Ясно, що Якщо , те в найдеться нормальна підгрупа така, що . Група має нормальну підгрупу таку, що й Але тоді Тому що , те, а виходить, Таким чином, , що й потрібно.

Нехай . Якщо , то має нормальну - підгрупу таку, що Група має нормальну - підгрупу таку, що . Тому що й , те з - замкнутості класу треба, що . Виходить, , тобто . Зворотне включення очевидно.

Лема 2.2. Для будь - якого класу справедливо наступне твердження:

Доказ. Якщо , то Нехай Якщо , те, а виходить, . Таким чином, . Нехай . Тоді має такі нормальні підгрупи , що Група має такі нормальні підгрупи , що Тому що , те, що й доводить рівність

Лема 2.3. Для будь - якого класу має місце включення

Доказ. Якщо , то . Нехай і група є підпрямим добутком груп , де . Розглянемо функцію . Функція є гомоморфізмом групи в групу . Ясно, що

 

 

є добуток груп , причому . Отже, , і лема доведена.

Лема 2.4.

У роботі Фишера, Гашюца й Хартли [1] уведене наступне поняття, у деякому змісті двоїсте визначенню формації.

Визначення 2.3. Клас груп називається класом Фиттинга, якщо він одночасно - замкнутий і - замкнуть.

Клас Фиттинга ми будемо надалі називати інакше радикальним класом. Через подвійність (нормальна підгрупа фактор - група) формацію можна було б назвати корадикальним класом.

Визначення 2.4. Нехай непустий - замкнутий клас, що містить 1. Позначимо через і назвемо - радикалом групи добуток всіх її нормальних - підгруп.

Класи є радикальними. - радикал групи це її підгрупа Фиттинга - радикал позначають інакше через і називають - радикалом. - радикал називають розвязним радикалом; зрозумілі також терміни - нильпотентний радикал, - замкнутий радикал і т.д. Клас усіх - нильпотентних груп є одночасно радикальним і корадикальним; це - нильпотентний радикал групи .

Надалі ми будемо вивчати формації, замкнуті щодо тих або інших операцій; зокрема, будуть розглядатися радикальні формації, тобто формації, що є одночасно й класами Фиттинга. Зараз ми звернемося до задачі побудова формацій за допомогою операцій

Теорема 2.1. Нехай і формації, причому або , або замкнута щодо нормальних підгруп. Тоді формація, що збігається з добутком

Визначення 2.5. Нехай деяка множина груп. Нехай перетинання всіх тих формацій, які містять клас називається формацією, породженої множиною груп

Помітимо, що операцію часто позначають інакше через Якщо те пишуть замість , причому в цьому випадку називають формацією, породженою групою .

Теорема 2.2. Для будь - якого класу має місце рівність:

Доказ. Якщо , те, і твердження вірно. Нехай . Тому що , те клас є - замкнутим. є клас і по лемі 2.2. Використовуючи це й леми 2.3 і 2.4, одержуємо

 

Останнє означає - замкнутість класу . Отже, формація, що містить , тому що . Виходить, . Зворотне включення очевидно.

Лема 2.5. Для будь - яких елементів групи виконуються рівності Якщо підгрупи групи , то виконуються наступні твердження:

1)

2) для будь - якого гомоморфізму групи ; зокрема, якщо група з нормалізує й , те нормалізує й

Лема 2.6 Нехай підгрупа нильпотентної групи , причому . Тоді

Доказ. Для того щоб довести лему, досить установити, що при будь - якому натуральному виконується включення:

 

 

При це вірно, тому що , а виходить, . Припустимо, що включення (*) справедливо при якімсь . Тоді, використовуючи лему 2.5, одержуємо

 

 

Тим самим (*) доведено.

Теорема 2.3 (Брайант, Брайс, Хартли [1]). Якщо така підгрупа групи , що , то

Доказ. Нехай нильпотентна нормальна підгрупа групи , а така підгрупа з , що . Доведемо індукцією по , що . Це вірно, якщо . Тому будемо вважати, що . Розглянемо наступні підгрупи прямого добутку

 

 

Очевидно, підгрупа нормалізує й . Позначимо через підгрупу групи , породжену підгрупами . Оскільки проекції на множники прямого добутку рівні , те . Помітимо ще, що , де нормально в і нильпотентна як добуток з .

Нехай центр підгрупи , . Легко бачити, що , причому й ; аналогічно, і . Але тоді , абелева й нормальна в. Якщо , те, де , і якщо , те, що тягне . Отже, . Якщо абелева, те, і ми маємо

 

 

Припустимо тепер, що . Ясно, що . Тому що

 

те нильпотентна щабля . Тому що , те ізоморфна й має щабель , а тому відповідно до леми 2.6 її нормальне замикання в має щабель . Тому що нормалізує й , те нормальна в. Отже, , причому . По індукції

 

 

Для групи і її нильпотентної нормальної підгрупи щабля теорема також вірна по індукції. Тому

 

 

Теорема доведена.

Теорема 2.4. (Нейман [1]) Формація, породжена розвязною групою, містить лише кінцеве число підформацій.

<