Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период
Диссертация - Компьютеры, программирование
Другие диссертации по предмету Компьютеры, программирование
p>
2.3. Сценарный анализ процентного риска портфеля ГКООФЗ.
Классическое решение проблемы управления процентным риском портфеля облигаций дается в рамках теории иммунизации. Однако диссертант не может признать его исчерпывающим по целому ряду причин.
Во-первых, инвестор может столкнуться с проблемой недоступности финансовых инструментов, соответствующих его сроку вложений. Дело в том, что иммунизация является недостижимой, если дюрации всех выпусков облигаций, обращающихся на рынке, превышают срок вложений инвестора. Поэтому на многих рынках при размещении средств на срок в несколько недель иммунизацию вообще невозможно осуществить.
Во-вторых, стремление к полному устранению процентного риска присуще лишь части инвесторов, осуществляющих операции на рынке облигаций. Для остальных инвесторов выбор структуры портфеля зависит от соотношения между ожидаемой доходностью и уровнем процентного риска, которые определяются распределением доходности портфеля для заданного срока вложений. Поскольку теория иммунизации не предлагает никакого решения проблемы оценки параметров распределения доходности портфеля, возникает необходимость в обращении к альтернативным методам.
В-третьих, возможности теории иммунизации достаточно ограничены. Она предлагает способ защиты от единовременных сдвигов временной структуры процентных ставок. Поскольку на реальных рынках колебания процентных ставок происходят постоянно, сохранение портфеля в иммунизированном состоянии требует осуществления многочисленных ребалансировок, в ходе которых структура портфеля приводится в соответствие с новым состоянием рыночной конъюнктуры. Однако стратегия частых ребалансировок сопряжена с чрезмерно высоким уровнем трансакционных издержек, что делает ее неприемлемой для большинства инвесторов. Отказ от проведения ребалансировок подвергает иммунизированный портфель процентному риску, что означает недостижение цели, поставленной при его формировании.
В-четвертых, в процессе управления портфелем облигаций многие инвесторы учитывают собственные предположения о направлении будущих изменений процентных ставок. Теория иммунизации не предлагает никакого инструмента поддержки принятия решений, позволяющего определять структуру оптимального портфеля на основе информации о характере прогнозов инвестора, его склонности к риску и предполагаемых сроках вложений.
Поэтому исследование процентного риска портфеля облигаций должно выходить за рамки теории иммунизации. Диссертант полагает, что научный анализ рисковых портфелей не менее важен, чем изучение условий, при которых процентный риск может быть полностью устранен, и правил достижения безрискового состояния.
Измерение процентного риска неиммунизированного портфеля предполагает оценку параметров распределения доходности портфеля для заданного срока вложений. Эту задачу можно решить, воспользовавшись сценариями будущих перемещений временной структуры процентных ставок. Поскольку процентные ставки для различных сроков вложений тесно коррелируют между собой, они достаточно точно описываются при помощи небольшого числа главных компонент. Поэтому задачу построения сценариев перемещения временной структуры процентных ставок можно свести к задаче построения сценариев изменения значений ее главных компонент.
В ряде исследований американских ученых для моделирования динамики процентных ставок используется модель авторегресиипроинтегрированного скользящего среднего Дж.БоксаГ.Дженкинса (ARIMA). В частности, П.Кэмпбелл и Р.Шиллер использовали модель ARIMA для описания колебаний долгосрочных процентных ставок, Е.Фама и Р.Блисс для прогнозирования изменений краткосрочных процентных ставок, Н.Галтекин и Р.Рогальски для прогнозирования доходностей бескупонных облигаций. Мы считаем, что моделью ARIMA можно воспользоваться и при построении сценариев изменения значений главных компонент временной структуры процентных ставок.
Модель ARIMA предназначена для описания и прогнозирования динамики нестационарных временных рядов, характеризующихся нестабильным средним значением уровней ряда. Как правило, в ходе анализа рядов динамики процентных ставок можно выявить несколько трендов, последовательно сменяющих друг друга и определяющих движение процентных ставок в течение некоторого промежутка времени. Высокая степень зависимости между элементами ряда, обусловленная этими трендами, находит выражение в высоких значениях выборочного коэффициента автокорреляции для больших лагов. В то же время переход к первым разностям уровней ряда динамики процентной ставки позволяет привести его к стационарному виду: устраняются тренды, стабилизируется среднее значение, а выборочная автокорреляционная функция приобретает затухающую форму. Это свидетельствует о том, что динамика процентных ставок определяется интегрированным нестационарным случайным процессом, который можно описать при помощи модели ARIMA.
Модель ARIMA(p,d,q) задает процесс изменения значений случайной переменной при помощи небольшого числа параметров: степени интегрирования d, p коэффициентов авторегресии и q коэффициентов скользящего среднего. Степень интегрирования d равна числу шагов расчета разностей между последовательными элементами временного ряда, необходимому для приведения исходного ряда к стационарному виду. Полученный стационарный ряд Xt описывается при помощи модели
,(2.3.1)
где кон?/p>