Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период
Диссертация - Компьютеры, программирование
Другие диссертации по предмету Компьютеры, программирование
?ания, способную предсказывать направление движения процентных ставок более, чем в 50% случаев. Конечно, намерение добиться чрезвычайно высокой точности прогнозов является утопией. Набор доступных индикаторов, сколь бы широким он ни был, не может дать полностью адекватную картину комплекса сил, определяющих траекторию движения процентных ставок. Кроме того, эффективные рынки оперативно реагируют на вновь поступающую информацию, поэтому лаговые значения доступных индикаторов могут объяснить лишь часть вариации будущих изменений прогнозируемого показателя. В этой связи любая, даже самая эффективная модель прогнозирования обречена на ошибки; она не может гарантировать тесной корреляции между предсказанными и фактическими значениями объясняемой случайной переменной.
Однако попытка построить модель, верно определяющую направление движения рынка немногим более, чем в 50% случаев, и обеспечивающую небольшую положительную корреляцию между прогнозируемыми и фактическими изменениями, при определенных обстоятельствах может увенчаться успехом. По мнению автора, степень эффективности прогнозирования зависит от трех основных факторов: степени устойчивости тенденций, определявших динамику процентных ставок в недавнем прошлом, степени эффективности рынка, или скорости его адаптации к новым состояниям факторов среды, а также качества используемой модели. Два первых фактора находятся вне рамок контроля исследователя; они задают условия, в которых решается задача. Однако третий фактор поддается контролю: исследователь может выбирать различные концептуальные подходы к построению модели, вводить в рамки анализа или исключать из них различные переменные, сужать или расширять диапазон исторических данных, на основе которых оцениваются параметры модели.
В настоящей работе осуществляется проверка гипотезы о существовании сложной нелинейной зависимости между прошлыми значениями индикаторов российского финансового рынка и последующими изменениями спот-ставки рынка ГКООФЗ для срока один год, отвечающей за часть вариации этих изменений. В качестве инструмента идентификации данной зависимости диссертантом используются нейронные сети гибкие непараметрические модели, нашедшие широкое применение в различных финансовых приложениях.
Выбор нейронных сетей в качестве инструментального средства решения задачи прогнозирования динамики процентных ставок обусловлен их уникальной способностью к аппроксимации нелинейных зависимостей. Согласно следствию из теоремы КолмогороваАрнольда, доказанному Хехт-Нильсеном, произвольная непрерывная функция нескольких переменных может быть аппроксимирована нейронной сетью с любой наперед заданной степенью точности. Важным аргументом, послужившим основанием выбора нейронных сетей в качестве инструмента моделирования, стали успехи целого ряда исследователей в решении различных проблем анализа финансовых рынков на основе разработки нейросетевых приложений.
Обработка информации в нейронной сети осуществляется при помощи особых структурных элементов искусственных нейронов. В нейрон поступает набор входных сигналов Xi. Каждый входной сигнал корректируется на соответствующий ему вес Wi. Потенциал нейрона рассчитывается по формуле
V = W0 + Xi Wi.(2.4.1)
Выходной сигнал нейрона формируется в результате преобразования потенциала нелинейной передаточной функцией f(V). Обычно для этого используется сигмоидальная функция вида
.(2.4.2)
Рис.2.4.1. Математическая модель нейрона.
Объединяя искусственные нейроны в сети, можно получить различные варианты архитектуры. Но в финансовых приложениях чаще всего используются многослойные персептроны (multilayer perceptrons). Это нейронные сети, позволяющие моделировать зависимости между векторами входных и выходных переменных. В многослойных персептронах нейроны объединяются в слои, каждый из которых обрабатывает одинаковые входные сигналы.
Рис.2.4.2. Архитектура многослойного персептрона.
Входной слой формируют независимые переменные, выходной зависимые. Между ними располагаются скрытые слои. Выходы нейронов предыдущего слоя направляются на вход нейронов последующего слоя. База знаний нейронной сети представляет собой матрицу весов связей между нейронами.
Процесс настройки весов многослойного персептрона называется обучением. Для этого используется обучающая выборка множество векторов значений объясняющих и объясняемых переменных. Цель обучения заключается в минимизации ошибки оценки объясняемых переменных на основе информации о значениях объясняющих переменных.
Итеративный алгоритм обучения многослойных персептронов, ставший впоследствии классическим и получивший название алгоритма обратного распространения ошибки (error backpropagation), впервые был разработан Полом Вербосом в 1974 г. в рамках работы над магистерской диссертацией в Гарвардском университете. Однако работа Вербоса не была должным образом оценена и долгое время оставалась неизвестной крупнейшим ученым. В 1986 г. алгоритм обратного распространения был заново открыт и популяризирован Д.Румельхартом, Г.Хинтоном и Р.Вильямсом. С начала 1990-х гг. алгоритм обратного распространения стал активно применяться в прикладных разработках.
Алгоритм обратного распространения осуществляет минимизацию функции ошибки, определенной на множестве возможных значений весов сети. Функция ошибки обычно задается как
,(2.4.3)
где 1/2 константа, введенная для