Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период
Диссертация - Компьютеры, программирование
Другие диссертации по предмету Компьютеры, программирование
?ерез характеристики временной премии по формулам
,(2.2.7)
,(2.2.8)
где и (ah(m,n)) среднее значение и среднеквадратическое отклонение временной премии.
Рис.2.2.2. Средний размер спекулятивной прибыли и уровень риска при реализации стратегии игры на кривой доходности на рынке ГКООФЗ в апреле 2000 марте 2001 г.
Как свидетельствует рис.2.2.2, на рынке ГКООФЗ при увеличении срока вложений m процентный риск оператора, осуществляющего реализацию стратегии игры на кривой доходности, уменьшается, а размер спекулятивной прибыли возрастает. Таким образом, увеличение срока вложений позволяет добиваться повышения эффективности рассматриваемой спекулятивной операции. Чем больше разрыв между датами платежа по облигации и окончания операции при любом заданном сроке вложений, тем больше уровень процентного риска и тем выше размер ожидаемой прибыли.
В качестве интегрального показателя эффективности стратегии игры на кривой доходности можно использовать отношение среднего размера спекулятивной доходности к его среднеквадратическому отклонению. Чем выше значение этого коэффициента, тем более значимым является приращение доходности в результате создания временного разрыва и тем выше вероятность получения положительной временной премии по итогам каждой конкретной операции.
Рис.2.2.3. Зависимость показателя эффективности стратегии игры на кривой доходности от срока операции и размера временного разрыва между датами платежа по облигации и окончания периода вложений на рынке ГКООФЗ в апреле 2000 марте 2001 г.
Рис.2.2.3 показывает, что увеличение срока вложений позволяет сделать игру на кривой доходности рынка ГКООФЗ более эффективной в том смысле, что присутствие временной премии становится все более значимым фактором повышения доходности операции. Для любого заданного срока вложений можно добиться максимизации значения коэффициента эффективности путем регулирования размера временного разрыва между датами платежа и окончания периода вложений. Чем продолжительнее срок операции, тем меньший временной разрыв позволяет обеспечить достижение наибольшего значения коэффициента эффективности.
Колебания временных премий подвергают инвесторов процентному риску, но вместе с тем открывают перед ними спекулятивные возможности. Осуществляя краткосрочные операции с долгосрочными облигациями, можно добиться существенного приращения доходности вложений, используя готовность большинства участников рынка ГКООФЗ вознаграждать спекулянтов за отказ от доминирующих временных предпочтений.
Однако для инвесторов, стремящихся к полному устранению процентного риска, колебания временных премий представляют серьезную проблему. Перед ними встает задача иммунизации риска смещения временных премий, то есть поиска такого варианта формирования структуры портфеля, при котором стоимость портфеля на конец периода вложений не может упасть вследствие изменения временных предпочтений рыночных агентов. Эта задача решается при использовании модели иммунизации от смещения временных премий, разработанной диссертантом.
Выводя условия иммунизации от смещения временных премий и предполагая, что период вложений m фиксирован, удобно представить временную премию в качестве функции одного аргумента, определив новую переменную
(2.2.9)
Поскольку
,(2.2.10)
,(2.2.11)
,(2.2.12)
где s(t,) спот-ставка для срока вложений , установившаяся в момент времени t, s|(t,) производная спот-ставки по сроку вложений .
Рассмотрим ситуацию, при которой значения временных премий смещаются на одну и ту же величину . Тогда рыночная стоимость портфеля на дату окончания периода вложений окажется равной
.(2.2.13)
Портфель иммунизирован от смещения временных премий, если при любых значениях параметра сдвига выполняется неравенство
FV() FV(0).(2.2.14)
Неравенство (2.2.14) выполняется на всей области определения функции FV(), если в точке =0 достигается глобальный минимум данной функции. Для этого достаточно выполнения двух условий:
1) ;(2.2.15)
2) .(2.2.16)
Дифференцируя функцию FV(), имеем
,(2.2.17)
.(2.2.18)
Поскольку многочлен, стоящий в правой части выражения (2.2.18), не содержит отрицательных членов, второе условие выполняется для любого портфеля. Первое условие выполняется лишь для подмножества портфелей, структура которых удовлетворяет ограничению вида
.(2.2.19)
Это уравнение можно упростить до
,(2.2.20)
где L чувствительность будущей стоимости портфеля к смещению временных премий, которую можно выразить через чувствительности отдельных облигаций, входящих в состав портфеля, по формуле
,(2.2.21)
где qj количество облигаций выпуска j, включенных в состав портфеля, СFji денежный платеж по облигации выпуска j через период времени ti, Lj показатель чувствительности облигации выпуска j к смещению временных премий.
Чем сильнее распределены денежные поступления от иммунизированного портфеля и чем сильнее облигации, включенные в его состав, реагируют на смещение временных премий, тем более опасными последствиями чреват непараллельный сдвиг функции pm(t). По мнению диссертанта, степень рассеяния денежных поступлений и силу реакции на смещения временных премий можно измерять при помощи квадрата показателя чувствительности L2. Поэтому инвестору, стремящемуся к полному устранению процентного риска, целесообразно следовать стратегии минимизации показателя L2 своего портфеля, выступающего аналогом показателя M2 критерия Фон?/p>