Ультраструктурные изменения костной ткани при огнестрельных ранениях и пути их коррекции

Диссертация - Медицина, физкультура, здравоохранение

Другие диссертации по предмету Медицина, физкультура, здравоохранение

стинке, который снизился до 59,21,3 кг/мм2 (в интактной кости - 67,11,0 кг/мм2).

 

Таблица 4. Показатели твердости трубчатых костей, (М m), кг/мм2

Зона (ткань) трубчатой костиВ зоне раневого каналаНа отдалении 10 смКонтрольОпытКонтрольОпытНаружная кортикальная пластинка51,5 1,359,2 1,0*59,2 1,054,4 1,8Зона, прилегающая к раневому каналу (губчатое вещество)50,7 0,961,2 1,2*61,2 1,259,4 1,8Внутренняя кортикальная пластинка57,2 0,867,1 1,0*67,1 1,059,2 1,3Примечание:

* - достоверно для р < 0,05 относительно контрольной группы.

В итоге, в зоне раневого канала компактное вещество трубчатых костей разупрочняется достаточно равномерно во всех анатомических зонах. Однако на отдалении от раневого канала разупрочняющее действие ударной волны распространяется преимущественно по кортикальным пластинкам.

В целом анализ данных, полученных при выполнении данного этапа исследования огнестрельных переломов, показал, что костная ткань, в зависимости от её структурных и микромеханических свойств, при воздействии огнестрельного ранящего снаряда разрушается по-разному.

Так, плоские кости черепа разрушаются преимущественно по вязкому типу с образованием в большинстве случаев дырчатых переломов с ровными краями. Основными механизмами разрушения костного матрикса при этом являются деформация смещения пластов и его разрывы.

Разрушение трубчатых костей в области диафиза происходит преимущественно по вязко-хрупкому типу с образованием оскольчатых переломов. Здесь основными механизмами разрушения являются трещины, разрывы, лакунарно-кавернозные деформации, а также гомогенизация и уплотнение костного матрикса в области канальцевых мембран.

При этом был выявлен и общий механизм разрушения обоих структурно-анатомических типов кости - пористая трансформация костного матрикса с формированием нано-, мезо- и микропор. Под воздействием факторов огнестрельных ранящих снарядов, как в плоских, так и в трубчатых костях, происходит аморфизация гидроксиапатита, что проявляется, прежде всего, в уменьшении размеров его нанокристаллов. Наряду с этим проведение рентген-структурного анализа показало увеличение напряженности в кристаллической решетке апатита.

Немаловажным явилось выявление того факта, что все патологические деформации костного матрикса анатомически не были связаны с системой костных канальцев и преимущественно располагались непосредственно на территории костного матрикса. Этот топологический фактор указывает на то, что разрушение происходит не только за счёт прямого аэро- и гидродинамического удара. Вероятно, когда при огнестрельной травме под действием энергии бокового удара формируется временная пульсирующая полость, происходят фазовые переходы матриксной воды, изменяется степень её упорядоченности. При этом появляется так называемый расклинивающий эффект и утрачиваются свойства воды, необходимые для поддержания нормального течения всех процессов жизнедеятельности костной ткани.

В целом, предложенный системный методологический подход, опирающийся на активное использование современных исследовательских нанотехнологий, позволил получить принципиально новые данные о тонких структурных механизмах разрушения костной ткани при действии факторов огнестрельного ранящего снаряда, которые не были изучены ранее.

 

ГЛАВА 4. ВЛИЯНИЕ РАНЕЛАТА СТРОНЦИЯ НА СТРУКТУРУ КОСТНОГО МАТРИКСА ПРИ КОНСОЛИДАЦИИ ОГНЕСТРЕЛЬНЫХ ПЕРЕЛОМОВ ДЛИННЫХ ТРУБЧАТЫХ КОСТЕЙ КОНЕЧНОСТЕЙ

 

4.1 Обоснование выбора модели для исследования влияния стронция ранелата на структуру костного матрикса при консолидации огнестрельных переломов длинных трубчатых костей конечностей

 

4.1.1 Обоснование применения стронция ранелата

Согласно представленным в предыдущих главах диссертации результатам, основным физико-химическим эффектом разрушающего действия ударной волны на костную ткань является аморфизация гидроксиапатита. Это подтверждается, прежде всего, данными рентген-структурного анализа, в соответствии с которыми как в зоне раневого канала, так и в пределах его ближайшего окружения (зона молекулярного сотрясения), в костном матриксе появляются рентгенаморфные частицы гидроксиапатита - доля аморфной фазы ГАП увеличивается практически в 2 раза (с 8 до 20%). Кроме того, по данным атомно-силовой микроскопии в интерстициальных щелях костного матрикса в зоне молекулярного сотрясения появляются аморфные частицы с высоким уровнем адгезионных сил и морфологически отличающиеся двойными контурами. Это свидетельствует об утолщении гидратной оболочки вокруг кристаллов гидроксиапатита и в целом о чрезмерной гидратации костного матрикса. Учитывая эти обстоятельства, появляется мотив препятствовать аморфизации гидроксиапатита путём направленного упрочнения кристаллической решетки гидроксиапатита с помощью химических веществ (Glimcher M.C. et al.,1981).

В данном случае, таким наиболее подходящим способом химического упрочнения является внедрение в формирующиеся кристаллы гидроксиапатита атомов стронция. Стронций, как и кальций, является элементом главной группы второй подгруппы периодической системы и, как и кальций содержит в наружном слое атома 2 электрона, которые и способен отдавать. Необходимо отметить, что атомы стронция несколько больше атомов кальция (0,215 и 0,197 нм соответственно), что, с одной стороны, предопределяет похожее их поведение в физиологической среде - стронций легко встраиваетс?/p>