Спектрофотометрия в фармакопейном анализе
Дипломная работа - Медицина, физкультура, здравоохранение
Другие дипломы по предмету Медицина, физкультура, здравоохранение
янии. Кроме переходов с одного уровня на другой, электроны колеблются вокруг и между двух или более положительно заряженных атомных ядер. Ядра в свою очередь сами движутся не только как целая единица, но и колеблются по отношению друг к другу, а также вращаются вокруг центра тяжести в молекуле. Все эти движения происходят с установленными частотами и характеризуются определенной величиной энергии.
Выше отмечалось, что молекулы вещества могут поглощать различные виды световой энергии. В частности, энергия, необходимая для получения эффекта колебания, приходится на область от 0,5 до 25 мкм.
Частота колебания молекулы или отдельной функциональной группы определяется геометрическим расположением всех атомов в молекуле, массой атомов, участвующих в движении, и прочностью в положении равновесия связи или связей, на которые оказано воздействие. Следовательно, любое вещество поглощает в инфракрасной области и лишь немногие вещества имеют поглощение в виде одной или нескольких полос.
Для двухатомной молекулы волновое число поглощения, выраженное в см-1, определяется следующей зависимостью:
,
где k - прочность связи; с -скорость света; m - уменьшение массы двух атомов, которое в свою очередь выражается уравнением:
В целом спектры инфракрасного поглощения являются чрезвычайно сложными, так как определяются большой группой взаимозависимых факторов.
.2 Инфракрасные спектрофотометры
Приборы, применяемые в инфракрасной области, отличаются от ультрафиолетовых в отношении источников излучения, оптических материалов и детекторов.
Источниками излучения в большинстве приборов являются лампы накаливания. Они представляют собой палочки карбида кремния (силитовый стержень - глобар) или очищенных окисей редкоземельных элементов - циркония, тория, иттрия (штифт Нернста). Оба элемента нагреваются электрически и при температуре 1200-2000 излучают радиацию с максимумом между 1,5 и 2,5 мкм, по типу радиации черного тела.
Кварцевые и стеклянные призмы вследствие их сильного поглощения непригодны для работы в основной инфракрасной области, т. е. ниже 3,6 мкм. Здесь необходимо использовать ионные кристаллы, имеющие колебания низкой частоты.
Невозможно использовать одну и ту же призму для всей инфракрасной области. Выбор призмы представляет собой компромисс между диспергирующей способностью и пропускаемостью призмы. Как, правило, призма становится наилучшим диспергирующим материалом при условиях наихудшей пропускаемости.
На практике в большинстве приборов применяют призмы из хлорида натрия (каменная соль). Если необходима большая точность или избирательность, используют призмы из фторида лития или фторида кальция. Иногда призменное устройство комбинируют с дифракционной решеткой.
Галоиды щелочных металлов должны быть защищены от высоких концентраций паров воды, в связи с чем следует проводить контроль температуры и влажности в лабораторном помещении.
Как и в ультрафиолетовой области, здесь применяют систему зеркал. Чаще всего основной частью монохроматора является оптическое устройство (автоколлимационная схема Литтрова), в котором луч дважды проходит через призму и таким образом достигается двойное диспергирование.
Исключительная сложность инфракрасных спектров обусловила создание регистрирующих автоматических приборов, являющихся в большинстве своем двухлучевыми. Схематическое изображение одного из таких приборов (типа Бекман) приведено на рис. 7.
Инфракрасное излучение источника разделяется зеркалами на два луча, один из которых проходит через образец, а другой через контроль. Луч, выходящий из контрольного отделения, отражается на посеребренную часть прерывателя, а затем на другое зеркало. Прерыватель последовательно направляет энергию от образца, а затем от контроля через оптическую систему (монохроматор) к детектору для измерения. После прохождения щели энергия через сферическое зеркало натравляется на систему, состоящую из призмы и зеркала, которые медленно вращаются для обеспечения необходимой спектральной области. Луч дважды проходит через призму и затем через выходную щель попадает в детектор, который таким образом последовательно получает импульсы энергии, прошедшей через образец, и энергии, прошедшей через контроль.
Так как невозможно получить постоянное количество энергии излучения из инфракрасного источника, две щели автоматически расширяются и сужаются для получения постоянного уровня энергии в нужной спектральной области н обеспечения чистоты спектрального излучения.
Вращающееся призменное устройство синхронизировано с движением диаграммы, на которой регистрируется спектр.
Интенсивность радиации, прошедшей через контрольную кювету, обычно выше, чем прошедшей через образец, так как последний поглощает часть энергии. Для компенсации энергии детектор связывают с оптическим клином, который механически входит в контрольный луч и снижает его интенсивность. Перо регистрирующего устройства связано с компенсатором и следует его движению, отмечая по оси ординат на бумаге проценты пропускаемости или поглощение при соответствующей длине волны или волновом числе, указываемых по оси абiисс. В результате получают спектр вещества.
В качестве детекторов применяют термопары, болометры, термисторы или пневматический детектор Голэя.
Термопара, как известно, представляет собой два различных металл