Спектрофотометрия в фармакопейном анализе

Дипломная работа - Медицина, физкультура, здравоохранение

Другие дипломы по предмету Медицина, физкультура, здравоохранение



рядок спектра; - число линий.

Разрешающая сила также зависит от качества дифракционной решетки. Любые недостатки в точности нанесения линий могут привести к появлению несколько смещенного изображения линий. Обычно получают спектр несколько более высокого порядка, чем ожидаемый.

Для обеих систем диспергирования света необходимы коллимирующие и фокусирующие линзы или зеркала, обычно комбинируемые с диспергирующим устройством.

В абсорбционной спектроскопии применяются кюветы разных размеров, изготовленные из кварца или стекла. Как и призмы, кюветы сделаны из материала, обладающего высокой пропускной способностью в определенной части спектра. Кварцевые кюветы пригодны для измерений как ультрафиолетовой, так и в видимой области; стеклянные же могут быть использованы только в видимой области.

Толщина слоя в кюветах колеблется от 0,1 до 10 см. Чаще всего измерения проводят в кюветах с толщиной слоя 1 см. Трудно производить кюветы, абсолютно идентичные по пропускаемости, поэтому одну и ту же кювету обычно используют только для растворителя. Поправка на различное поглощение кювет определяется путем сравнения поглощения обеих кювет, наполненных чистым растворителем.

Следует обращать внимание на чистоту кювет и состояние их оптической поверхности, так как оба этих фактора влияют на показания поглощения.

Для измерения поглощения света необходимо фотометрическое устройство. Применяемые для этих целей фотоэлементы, фотоэмиссионные лампы и фотоумножители основаны на известном эффекте перехода световой энергии в электрическую.

Фотоэлементы дают относительно сильный ток, который может быть измерен при помощи гальванометра. Фотоэлементы чаще всего применяются в фотоэлектроколориметрах.

Фотоэмиссионные лампы - это разреженные трубки, содержащие два электрода, один из которых при облучении испускает электроны, так как покрыт светочувствительным материалом (щелочной металл, нанесенный на слой окиси серебра или сурьмы). Возникающий при этом ток очень слабый, поэтому необходимо применять усилительные устройства.

Эмиссионные лампы применяют по следующим основным причинам. Вследствие низкого внутреннего сопротивления усиление тока в фотоэлементе затруднено. В спектрофотометре используется более узкий луч света, чем в колориметре, благодаря чему ток в фотоэлементе был бы слишком слаб для измерения. Ток фотоэлемента, подвергаемого постоянному освещению, медленно снижается во времени. Наконец, спектральный ответ фотоэлементов ограничивается видимой частью спектра, фотоэлементы почти бесполезны в ультрафиолетовой области.

Природа покрытия определяет область волн, в которой эмиссионная лампа может быть использована (от 300 до 500 нм для слоя металлического натрия и от 200 до 700 нм для слоя калия).

Фотоумножительные устройства являются дальнейшим развитием фотоэмиссионных ламп. Первичные электроны, испускаемые фоточувствительным электродом, направляются на следующий электрод, который в свою очередь испускает несколько электронов на каждый падающий на него электрон и т. д. После ряда таких этапов удается значительно усилить ток при сохранении очень небольшой величины начального тока.

.3 Методика спектрофотометрических измерений

Существует два типа спектрофотометров: однолучевые и двухлучевые.

В однолучевом приборе луч света, выходящий из монохроматора, проходит через одну кювету и затем попадает в детектор. Определение поглощения производят следующим образом. Вначале прибор устанавливают на нуль пропускаемости (бесконечная величина поглощения) с детектором в темноте, что делается для компенсации слабого тока, который имеется даже при отсутствии излучения и возникает вследствие эмиссии тепловых электронов. Затем в луч помещают кювету, содержащую растворитель, и прибор устанавливается для измерения в единицах пропускаемости (нуль поглощения) при определенной длине волны. Наконец, кювету с растворителем заменяют кюветой с раствором исследуемого вещества и производят измерение.

По этой методике измеряют два фототока - один пропорциональный интенсивности луча, прошедшего через растворитель, и второй - пропорциональный интенсивности луча, прошедшего через раствор вещества. Чтобы соотношения этих токов были эквивалентны пропускаемости, надо источник излучения и детектор оставлять постоянными в пределах, когда пропускаемость установлена на единицу и когда пропускаемость уменьшается при измерении поглощения вещества. Следовательно, особое внимание необходимо обращать на постоянное напряжение, подающееся на лампу.

В двухлучевом спектрофотометре эта проблема разрешена следующим образом. Излучение, выходящее из монохроматора, разделяется на два луча, имеющие одинаковые интенсивности и спектральные распределения. Один из лучей проходит через кювету с растворителем, другой - через кювету с исследуемым веществом. На отношение излучений, выходящих из обеих кювет, величина источника света не оказывает никакого влияния. Отношение излучений может быть измерено двумя способами.

Лучи, вышедшие из кювет, направляются на катоды двух фотоэмиссионных ламп или фотоумножителей. Выходы этих детекторов связаны серией сопротивлений, усиливают разницу между двумя фототоками и регистрируют величину поглощения. Удобством двухлучевых приборов является возможность регистрации показаний.

В приборах с одним детектором лучи, выходящие из двух кювет, направляются на ту же часть кат