Проектирование гидрографических работ в море Лаптевых

Дипломная работа - Геодезия и Геология

Другие дипломы по предмету Геодезия и Геология

ньшения объема данных, экспорта предварительно обработанных данных для дальнейшей обработки и распечатки рабочих планшетов на цветном струйном плоттере.

Программное обеспечение IRAP фирмы Roxar используется для окончательной камеральной обработки результатов съемки. Этот программный пакет состоит из модулей расчета регулярной сети, построения и вывода изобат, вывода глубин, создания зарамочного оформления, расчета объемов для дноуглубления, построения профилей дна по произвольным направлениям.

 

.7.2 Прокладчик

Для выводов результатов предварительной обработки и контроля качества в систему, обеспечивающую работу многолучевого эхолота может быть включен растровый цветной прокладчик. При эксплуатации на промерном катере для облегчения транспортировки рекомендуется прокладчик размера А3 со встроенным интерпретатором языка Post Script производства фирмы Hewlett Packard.Такого прокладчика достаточно для получения рабочих планшетов в полевых условиях, а его вес составляет несколько килограммов. Однако по дополнительному согласованию в поставку может быть включен любой другой прокладчик формата А2,А1 или А0.

 

2.7.3 Измеритель вертикального профиля скорости распространения звука в воде

Необходимым условием получения качественных материалов при съемке с использованием многолучевого эхолота является точное знание профиля скорости звука в районе работ. Учитывая возможное использование системы в устьевых участках рек и в прибрежных зонах, т.е. в наиболее сложных в гидрологическом отношении районах, мы предлагаем использовать прекрасно зарекомендовавший себя измеритель Sound velocity Smart Sensor производства фирмы Applied Microsystems, Канада. В отличие от измерителей, выдающих температуру и соленость воды, предлагаемый измеритель работает по принципу эхолота с фиксированной известной базой, т.е. выдает непосредственно значение скорости звука. Такой измеритель не нуждается в частых поверках и калибровках, имеет маленькие габариты (45мм x 315мм) и весит 515 граммов. Для удобства выполнения работ на мелководных участках в поставку целесообразно включать два кабеля: длиной 15 м. и 50 м.

 

.7.4 Дисплей рулевого

Наиболее удобно использовать для этой цели стандартный персональный компьютер, а для катерного варианта использования многолучевого эхолота -портативный компьютер типа Notebook. На таком портативном компьютере может быть установлена операционная система Юникс или Windows, а также необходимое программное обеспечение, предоставляемое российским партнером фирмы Simrad- компанией Элком.

 

Рис.7 Блок схема комплекса на базе многолучевого эхолота ЕМ-3000

 

2.8 Интегрированная система пространственной ориентации Seapath

 

Для получения кондиционных данных при проведении промера с многолучевым эхолотом особое значение приобретает частота обновления и точность данных о координатах и курсе судна, а также мгновенных значениях крена, дифферента и вертикального перемещения антенны эхолота под воздействием морского волнения. Обычным подходом является установка на судне спутниковой навигационной аппаратуры (СНА), гирокомпаса и датчика качки , построенного на механических гироскопах. В англоязычной литературе такой датчик качки , называемой также гировертикаль, называется MRU (Moution Reference Unit). Имеются многочисленные марки такой аппартуры, выпускаемые несколькими зарубежными фирмами. Некоторые из этих утройств измеряют углы крена и дифферента, а также вертикальное перемещение. В этом случае многолучевой эхолот использует информацию о курсе от судового гирокомпаса. В новейших датчиках качки выполняется измерение всех четырех необходимых параметров (курс,крен, дифферента и вертикальное переме-щение). Отметим, что при промере с многолучевым эхолотом необходимо с высокой точностью знать мгновенные значения именно курса (направления диаметральной плоскости) судна с которым связаны оси излучающих антенн. Это обстоятельство не позволяет исполь-зовать в многолучевой съемке значения курса (путевого угла), который вырабатывает СНА. Использование в гидрографическом комплексе обычного судового гирокомпаса также вызывает некоторые трудности ввиду его невысокой точности, особенно после маневрирования. На катерах использование гирокомпасов еще больше затрудняется. Малогабаритные гирокомпасы не обладают необходимой точность для обеспечения многолучевого эхолота. К тому же интенсивное маневрировании на таком динамическом объекте, как малотоннажный катер, способно вывести гирокомпас из меридиана. Прецезионные гирокомпасы непреемлемы для небольших плавсредств ввиду того, что имеют значительные весо-габаритные характеристики, затрудняющие их транспортировку и маневренную установку.

Прецезионная механика весьма чувствительна к ударам и вибрации. Время от запуска гирокомпаса до выхода в рабочий режим обычно составляет несколько часов. Существенна широтная погрешность в высоких широтах, а также скоростная погрешность. В результате суммарная погрешность на промере , возникающая при переходах с галса на галс (поворот на 180є) ведет к заметному снижению точности многолучевой съемки рельефа. То же самое можно сказать и о датчике качки, выполненном на механических гироскопах. Высокое качество съемки обеспечивается только на длинных прямолинейных галсах. После очеред-ного разворота на 180є(переход на новый галс)при скорости 6 узлов значение вертикального перемещения