Информация по предмету Физика

  • 21. Акустика движущихся сред
    Другое Физика

    Частота ультразвука, принятого от движущегося отражателя (или рассеивателя), отличается от частоты излученного сигнала. Это явление называют эффектом Доплера, а величину изменения частоты, пропорциональную скорости движения отражателя (или рассеивателя), доплеровским сдвигом. Смешивая излученный и принятый сигналы, получают разностный (доплеровский) сигнал, частота которого равна доплеровскому сдвигу. Для связанных с движением многих физиологических процессов в организме величина этого сдвига находится в диапазоне звуковых частот, что и привело к созданию простых индикаторов скорости, в которых доплеровский сигнал подается на наушники или громкоговорители. Оператор, работающий с таким прибором, может на слух определить наличие перемещения какого-либо отражателя (или рассеивателя) на пути ультразвукового пучка, а при некотором опыте судить о характере движения. Такие устройства были использованы для определения внутриутробного сердцебиения плода и вибраций стенок сосудов при измерении артериального давления. В обоих случаях эти приборы использовались как своеобразный стетоскоп; при этом регистрировались мощные ультразвуковые сигналы от отражающих структур. Однако наибольший интерес вызывает задача регистрации и измерения параметров кровотока, когда ультразвук рассеивается на форменных элементах крови, хотя для работы со слабыми рассеянными сигналами требуется более сложная аппаратура. Оператор может определить, доступен ли сосуд, находящийся на пути пучка, доплеровскому обследованию, а при наличии опыта может обнаружить высокие доплеровские частоты от ускоренного кровотока в сужении сосуда, а также турбулентность за сужением.

  • 22. Акустика океана
    Другое Физика

    Несколько лет назад во время научной экспедиции в тропической Атлантике, возглавляемой одним из авторов (Л. М. Бреховских), были открыты синоптические вихри в океане. Это произошло в 1970 г. в ходе эксперимента "Полигон-70", выполнявшегося на обширной акватории площадью 74 тыс. км2 (Приложение 9, сторона каждого квадрата около 270 км). На полигоне была раскинута сеть из 17 буйковых станций (кружки Приложении 9), похожая в плане на крестообразную антенну. На каждом буйке на десяти горизонтах были установлены приборы, фиксировавшие течения и температуру воды. Приборы работали в течение полугода и дали материал, коренным образом изменивший наши представления о морских течениях. Оказалось, что течений, которые всегда рисовали на картах в виде широких рек, в действительности не существует. Основная кинетическая энергия океанских вод (около 90% по предварительным оценкам) сосредоточена в громадных, диаметром до 300-500 км, водных вихрях, подобных циклонам и антициклонам в атмосфере. В Приложении 9 изображены так называемые линии тока, очерчивающие форму синоптических вихрей на глубине 300 м. Эти линии по своему смыслу подобны изобарам атмосферного давления на картах погоды. Буквы "В" и "Н" соответствуют высокому и низкому давлению. Приведенные картины вихрей разделены интервалами времени примерно в один месяц и свидетельствуют об изменчивости ситуации. Глубина вихрей достигает 2-3 км, скорость движения воды (стрелки в Приложении 9) на периферии вихря может доходить до нескольких десятков метров в минуту. Вихри медленно перемещаются со скоростью до 4-6 м/мин, и если усреднить их движение за много месяцев, то только тогда мы получим нечто вроде известных всем океанических течений. Эксперимент, проведенный через несколько лет американскими океанологами в другой части океана, подтвердил правильность этих представлений. Механизм зарождения и развития синоптических вихрей изучался в совместном советско-американском эксперименте "ПОЛИМОДЕ".

  • 23. Акустические волны в твердых телах
    Другое Физика

    При изменении коэффициента Пуассона примерно скорость изменяется от до . Скорость зависит только от упругих свойств твердого тела и не зависит от частоты и рэлеевская волна не обладает дисперсией. Амплитуда волны быстро убывает с увеличением расстояния от поверхности. В рэлеевской волне частицы среды движутся согласно (14), (15) по эллиптическим траекториям, большая ось эллипса перпендикулярна поверхности и направление движения частиц на поверхности происходит против часовой стрелки относительно направления распространения волны. Рэлеевские волны были обнаружены при сейсмических колебаниях земной коры, когда были зарегистрированы три сигнала. Первый из них связан с прохождением продольной волны, второй сигнал связан с поперечными волнами, скорость которых меньше, чем у продольных волн. И третий сигнал обусловлен распространением волн по поверхности Земли. Кроме волн существует целый ряд других типов поверхностных акустических волн (ПАВ). Поверхностные поперечные волны в твердом слое, лежащем на твердом упругом полупространстве (волны Лява), волны в пластинках (волны Лэмба), волны на искривленных поверхностях, клиновые волны и т.д. Энергия ПАВ сосредоточена в узком поверхностном слое толщиной порядка длины волны , они не испытывают (в отличии от объемных волн) больших потерь на геометрическое расхождение в объем полупространства и поэтому они могут распространяться на большие расстояния. ПАВ легко доступны для техники, как бы «их легко взять». Эти волны широко используются в акустоэлектронике.

  • 24. Акустические резонаторы
    Другое Физика

    Рис.2Рис.3Пьезокерамический излучатель слабой волны (2) был приклеен к торцу образца (1) и массивному (М= 2 кг) титановому концентратору (4), являющемуся излучателем мощной волны накачки (ее минимальный уровень превышал максимальный уровень слабой волны примерно на 30 дБ), так что граничное условие на этом торце резонатора было близко к условию на абсолютно жесткой поверхности. К другому концу стержня приклеивался пьезоакселерометр (6) достаточно малой массы, так что эта граница была близка к акустически мягкой. Для таких резонаторов спектр собственных частот определяется следующим выражением: fn=c0(2n1)/4L, где c0 - скорость продольной волны в стержне, n = 1,2…- номер продольной моды резонатора. С пьезоакселерометра сигнал поступал на спектроанализатор (10) для измерения амплитуды накачки, а также через режекторный фильтр (9), подавляющий сигнал на частоте накачки на 30 дБ, на селективный вольтметр (8) и осциллограф (7), где производилось измерение уровня слабого сигнала. Собственные частоты первых продольных мод резонатора при малых амплитудах возбуждения составляли соответственно 2250 Гц, 6800 Гц, 10150 Гц и 16650 Гц, а добротности - 45, 90, 81 и 93. Таким собственным частотам соответствует c0»2500 м/с. Измерения проводились для слабой волны на 4-й моде резонатора и для накачки на 1-й моде, а также - наоборот. На рис.3 приведены резонансные кривые для слабой волны на 4-й моде в присутствии накачки на 1-й моде при различных ее амплитудах. Видно, что с ростом амплитуды волны накачки происходит сдвиг резонансной частоты и расширение резонансной кривой, т.е. уменьшение добротности резонатора

  • 25. Акустические свойства полупроводников
    Другое Физика

    А что будет с электронами в полупроводнике? Они перераспределятся в пространстве, стремясь стечь с потенциальных «горбов» и заполнить потенциальные «ямы». При этом уменьшится первоначальный потенциал (?0, или, как говорят, произойдет его экранирование электронами проводимости. Поэтому первый вопрос, который следует решить: как перераспределяются электроны в поле потенциала и каким образом они его будут экранировать? Для решения этого вопроса следует выяснить, как нужно описывать движение электрона в поле звуковой волны. Это существенно зависит от того, какова величина соотношения между длиной звуковой волны 2л/q и длиной l свободного пробега электронов какова величина параметра ql. Этот параметр играет центральную роль в теории акустических свойств проводников; при различных его значениях электроны по-разному взаимодействуют со звуком. Обычно в пьезоэлектрических полупроводниках ql «1, поэтому пока ограничимся рассмотрением этого случая. В чистых металлах при низких температурах может выполняться противоположное неравенство. Об этом пойдет речь в следующей главе.

  • 26. Алессандро Вольта (1745-1827)
    Другое Физика
  • 27. Альтернативні джерела енергії в Україні та можливості їх використання в Україні
    Другое Физика

    За оцінками вчених Інституту електродинаміки й Інституту відновлюваної енергетики НАНУ, наша країна має значний потенціал в області відновлюваних джерел енергії, однак при цьому немає чіткої, спрямованої на їхній розвиток, державної політики. Ще у 1996 році Президент підписав Указ “Про будівництво вітрових електростанцій”. До нього розроблено й затверджено Кабміном “Комплексну програму будівництва вітрових електростанцій”. Зокрема, було передбачене збільшення оптового тарифу на електроенергію на 0,75%, з наступним спрямуванням цих коштів на будівництво вітрових електростанцій і виробництво сучасного вітроенергетичного обладнання. Основна частина вітроагрегатів, що використовуються на електростанціях, починає виробляти електроенергію при швидкості вітру 5 м/с. Саме такою є середньорічна швидкість вітру в Карпатському, Причорноморському, Приазовському, Донбаському, Західно-Кримському, Східно-Кримському регіонах країни. Сьогодні в Україні працює шість вітрових електростанцій: Аджигольська, Асканієвська, Донузлавська, Новоазовська, Сакська й Трускавецька ВЕС. Їхня загальна потужність, що генерується, становить трохи більше 70 МВт. Для порівняння варто відзначити, що це менше одного енергоблоку теплової електростанції. За оцінками вчених, теоретичний вітропотенціал території України становить 330 млн. МВт, що більш ніж у 6 000 разів перевищує загальну потужність, що генерується, нашої енергосистеми. Реальною перспективою для України є створення вітрових потужностей, які генеруються, в розмірі 16 000 МВт (в еквіваленті це 16 атомних енергоблоків). Слід зазначити, що у світі вітрова енергетика розвивається досить інтенсивно й у деяких країнах випереджає за показниками інші енергетичні галузі. Лідируючими країнами в освоєнні енергії вітру є США, Німеччина й Данія.

  • 28. Альтернативные виды энергии
    Другое Физика

    Глядя вперед, в те времена, когда штат Калифорния будет нуждаться в удобных станциях для подзарядки электробатарей, “Южно-калифорнийская компания Эдисон” планирует начать испытание специальной автостанции для машин, работающих на солнечной энергии, которая в конечном счете должна стать обычной заправочной станцией со множеством парковочных мест и различными магазинами. Солнечные панели на крыше станции, расположенной в городе Даймонд-Баре, обеспечат энергию для зарядки электромобилей в течение всего рабочего дня даже зимой. А излишек, получаемый от этих панелей, будет использоваться для нужд самой автостанции. Уже в 1981г. через пролив Ла-Манш совершил перелёт первый в мире самолёт двигателем, работающим от солнечных батарей. Чтобы совершить перелёт на расстояние 262 км, ему потребовалось 5,5 часа (см. рис. №2). А по прогнозам учёных конца прошлого века, ожидалось, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его “солнцеобильностью”.

  • 29. Альтернативные источники энергетики
    Другое Физика

    Известно, что планета Земля и ее ионосфера образуют "сферический конденсатор", напряженность создаваемого им электростатического поля составляет в среднем 100 В/м. Это "позволяет смотреть на Землю, как на огромный резервуар электричества..." и дает человечеству надежду, "подключить свои машины к самому источнику энергии окружающего пространства". Одна из возможных конструкций - антенна в виде металлизированного аэростата, поднятого над землей и служащего накопителем электрического заряда. Будучи соединенным с преобразователем энергии с помощью кабеля, этот накопитель способен использовать "дармовую" энергию атмосферного электричества[12]. Внутренняя сфера - поверхность Земли - заряжена отрицательно, внешняя сфера - ионосфера - положительно. Изолятором служит атмосфера Земли. Подключив обычный металлический проводник к отрицательному полюсу - Земле, а положительный полюс - ионосфере - с помощью специфического проводника - конвективного тока, мы получим глобальный генератор электрической энергии. Конвективные токи - это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Самые мощные из них - это ураганы и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. На практике для того чтобы удалять избыточные заряды с верхней точки проводника необходимо устройство, которое позволяет электронам проводимости покинуть проводник - излучатель электронов или эмиттер. Эмиттер может быть построен на базе высоковольтного генератора небольшой мощности, который способен создать коронный разряд вокруг излучающего электрода на верхушке проводника. Такие высоковольтные генераторы используются в промышленности в дымоулавливателях, ионизаторах воздуха, установках для электростатической окраски металлов и различных бытовых приборах. Генератор создает вокруг излучателя электронов проводимости искровой, коронный или кистевой разряд. Такой разряд является проводящим плазменным каналом, по которому электроны проводимости свободно стекают в атмосферу уже под действием электрического поля Земли. Нами(Ташполотов Ы., Садыков Э., Исаков Д.) также разрабатываются эмиттеры -излучатели электронов для получения тока на основе электрического поля Земли.

  • 30. Алюминий-литиевые сплавы
    Другое Физика
  • 31. Ампер - заснавальнік сучаснай электрадынамікі
    Другое Физика

    Адным з першых сярэднявечных навукоўцаў (а магчыма, і самым першым), хто вёў спадарожнае назіранне фактаў, якія могуць навесці на ўяўленні пра ўзаемадзеянні, падабенства ці адрозненне электрычных і магнітных з'яў, быў Кардан, які ўнёс у гэта пытанне некаторую ўпарадкаванасць. У сваёй працы Пра дакладнасць 1551 гада ён эксперыментальна паказвае безумоўнае адрозненне паміж электрычнымі і магнітнымі прыцягненнямі. Калі бурштын здольны прыцягваць усякія лёгкія целы, то магніт прыцягвае толькі жалеза. Наяўнасць перашкоды (напрыклад, экрана) паміж целамі спыняе дзеянне электрычнага прыцягнення лёгкіх прадметаў, але не перашкаджае магнітнаму прыцягненню. Бурштын не прыцягваецца тымі кавалачкамі, якія ён сам прыцягвае, а жалеза здольна прыцягваць сам магніт. Далей: магнітнае прыцягненне накіравана пераважна да палюсоў, лёгкія ж целы прыцягваюцца ўсёй паверхняй нацёртага бурштыну. Для стварэння электрычных прыцягненняў неабходны, па меркаванні Кардана, трэнне і цеплыня, у той час як прыродны магніт выяўляе сілу прыцягнення без якой-небудзь яго папярэдняй падрыхтоўкі.

  • 32. Амплитудная модуляция и фазовое рассогласование магнитных сверхструктур
    Другое Физика

    Известно [2], что при электролитическом осаждении кобальта и сплавов на его основе выделяется большое количество водорода. Он адсорбируется на поверхности строящихся кристаллитов и частично включается в решетку, образуя пересыщенный раствор внедрения. Ранее нами показано [3], что при включении водорода в кристаллиты, деформации решетки становится достаточно, чтобы образовался ДУ. С уменьшением рН раствора на катоде выделяется больше водорода, в связи с чем увеличивается доля водорода, который может включиться в кристаллическую решетку. Поэтому при увеличении кислотности раствора рН от 6.05 до 1.6 концентрация ДУ растет, а поскольку прослойки ДУ имеют ГЦК-решетку, то увеличение концентрации ДУ способствует формированию на катоде кобальта с ГЦК-решеткой (b-фаза). При этом в пленках кобальта с b-фазой образуется текстура [211] или [110] (рис.1а). При текстуре [00.1] пленок Co-W ДУ располагаются параллельно плоскости осадка (рис. 1 б). В месте образования ДУ участки кристаллической решетки когерентно срастись не могут, поскольку различаются последовательностью укладки моноатомных слоев (00.1) (рис. 1 б, участки 1 и 2). Поэтому в месте образования ДУ плотность упаковки атомов уменьшается, появляются оборванные и нескомпенсированные связи, что и обуславливает образование микродвойников [4]. Двойники с плоскостями двойникования (10.1) или (10.2) имеют ориентацию, близкую к [10.0]. Такая ориентация двойников способствует включению большого количества вольфрама и образованию в них соединения Co3W. Смена текстуры [00.1] на [10.0] c помощью двойникования происходит вначале только в отдельных участках кристаллитов (в местах образования ДУ), а при большом содержании вольфрама и во всем осадке.

  • 33. Анализ динамического поведения механической системы
    Другое Физика

    Дана механическая система с одной степенью свободы, представляющая собой совокупность абсолютно твердых тел, связанных друг с другом посредством невесомых растяжимых нитей, параллельных соответствующим плоскостям. Система снабжена внешней упругой связью с коэффициентом жесткости с. На первое тело системы действует сила сопротивления и возмущающая гармоническая сила . Трением качения и скольжения пренебрегаем. Качение катков происходит без скольжения, проскальзывание нитей на блоках отсутствует. Применяя основные теоремы динамики системы и аналитические методы теоретической механики, определен закон движения первого тела и реакции внешних и внутренних связей. Произведен численный анализ полученного решения с использованием ЭВМ.

  • 34. Анализ природы и свойств гравитационных волн методом электромеханической аналогии
    Другое Физика

    Внутренняя энергия этой системы также постепенно уменьшается за счёт теплообмена с окружающей средой и за счёт инфракрасного излучения (это происходит даже при очень хорошей теплоизоляции). Уменьшение внутренней энергии системы горячая-холодная вода влечёт за собой уменьшение массы этой системы, а, следовательно, и уменьшение гравитационного поля этой системы. Так как процесс уменьшения внутренней энергии системы горячая-холодная вода в термосе - это длительный процесс, то уменьшение гравитационного поля этой системы - довольно медленный процесс. Это уменьшающееся гравитационное поле системы порождает в пространстве постепенно изменяющееся временное поле такого направления, которое определяется винтом с «правой нарезкой»

  • 35. Анализ проблем оценки качества электроэнергии
    Другое Физика

    Несмотря на это, электрические энергосистемы обычно не способны к обеспечению электропитания, выполняющего эти потребности. Несмотря на это, электрические энергосистемы зачастую не способны предоставлять электропитание, выполняющее эти требования. Чаще всего ухудшение качества электроэнергии происходит как из-за возмущений вызванных переходными процессами (броски и просадки напряжения, импульсные помехи) так и в установившихся режимах (гармонические искажения, несимметричность, фликер). Каждая из этих проблем имеет различные причины возникновения. Некоторые проблемы жестко связаны с разнесённой структурой электрических линий. Например, короткое замыкание в электрической сети может вызвать провал напряжения, который затронет некоторых потребителей, подключенных к энергосистеме, и чем более серьезное короткое замыкание, тем большее количество потребителей будет затронуто. Другие проблемы, такие как гармонические искажения, являются результатом влияния нагрузок потребителя, и могут распространятся по сети и негативно влиять на работу других потребителей, а могут и нет. В большинстве случаев промышленные потребители жалуются на очевидные энергетические проблемы, такие как отсутствие напряжения (которое колеблется от нескольких секунд до нескольких часов), и кратковременные провалы или спады напряжения, когда амплитуда, на короткое время, значительно уменьшается. Фактически, продолжительное отсутствие напряжения - проблема для всех пользователей, но многие технологические процессы очень чувствительны даже к очень коротким прерываниям электроснабжения. Пример таких чувствительных операций - непрерывные процессы, где даже короткие прерывания электроснабжения могут привести к потере синхронизации между различными механизмами и этим остановить все процессы производства. Хотя большинство потребителей более чувствительны к переходным помехам, так как в таком случае немедленно происходят экономичные потери, есть большое количество проблем не видных не вооруженным глазом, но затрагивающие электроэнергетические параметры, таких как гармоники и несимметрия напряжения. Фактически, основным эффектом действия гармонических составляющих на энергосистему является резонанс, уменьшающий срок службы вращающихся машин, нарушающий корректную работу защитных устройств электросистемы, вносящий ошибки в измерениях, дополнительные потери, и т.д. Кроме того, явление несимметрии необходимо надежно контролировать, обнаруживать и исправлять. Машина, работающая под несимметричным электропитанием, будет потреблять ток с некоторым углом разбаланса. В результате трехфазные токи будут значительно отличаться от номинальных, и может иметь место повышение температуры механизма. Двигатели и генераторы, особенно дорогие и габаритные, могут быть оснащены защитой контролирующей несимметричность напряжения, и отключающей машину, если несимметричность имеет место быть. Многофазные выпрямители, во процессе работы, также вызывают несимметричность электропитания; это выражается в появлении нежелательной переменной составляющей на стороне постоянного тока и нехарактерную гармонику на стороне переменного тока. Кроме того, присутствие несимметричной нагрузки создают несбалансированные токовые составляющие, которые вызывают падения напряжения на сопротивлении источника и следовательно производят энергию текущие назад от нагрузки к электрической сети.

  • 36. Анализ способов защиты и хищения информации в счетчиках электрической энергии
    Другое Физика

    Как известно энергия учитываемая счетчиком определяется по формуле интеграл по времени U*I*COS. В этом способе изменяют величину U напряжение на обмотке или датчике счетчика. Для этого необходимо отключить нулевой провод от счетчика. Это достигается переламыванием жилы провода, не снимая изоляции. Для того чтобы предотвратить контакт концов жилы растягивают изоляцию и через шприц заливают в место разрыва клей, герметик. По перемычке синего цвета нормальный ноль подключается к квартире. Так иногда делают электрики при поломке пакетного переключателя, на учет это не влияет, затем в нулевой провод, идущий от счетчика к нулевой колодке надо врезать сопротивление 3...15 кОм (зависит от желания, на сколько "снизить" учет и от сопротивления обмотки напряжения счетчика). Мощность сопротивления достаточна 1. .3 Вт, надежный контакт тоже не требуется. Врезку можно сделать, разрезав провод прикрутить сопротивление, все согнуть и хорошо замотать изолентой, чтобы было похоже на обычную скрутку. Изменяя величину сопротивления можно менять погрешность счетчика от 0 до - 100%. Погрешность счетчика в 99.9% при проверках не проверяется. Двух полюсный индикатор будет показывать, что ноль есть.

  • 37. Анализ трехфазных электрических цепей и переходных процессов в линейных электрических цепях с сосредоточенными параметрами
    Другое Физика

    Активную мощность Р, потребляемую в нагрузке трёхфазной цепи , можно как сумму показаний ваттметров, включённых в данном случае в фазы А и В по схеме двух ваттметров, т. е. Р = РА +РВ . Показания каждого из ваттметров могут быть определены по формулам:

  • 38. Аналоговые импульсные вольтметры
    Другое Физика

    Основные характеристики В4-2В4-3В4-4В4-9АИзмерение видеоимпульсов Диапазон измерений, В 3-1500,0003-13-1501-20С делителем до, В 500100-200Пределы измерений, В 15; 50; 1500,003; 0,01; 0,03; 0,1; 0,3; 115; 50; 1502,5; 10; 20Основная погрешность измерения, % ± (4-6)± (4-6)± (4-6)± (2,5-4)Длительность импульсов, мкс 0,1-3001-2000.01- 200Более 0,001Длительность фронта импульсов, нс ----Частота следования импульсов, кГц -0,05-100,02-100,001-Скважность 50-25002-5000Более 22-Входное сопротивление, МОм, 0,2-201575 Ом; 0,5с шунтирующей емкостью, пФ 14112,5-83Время установления показаний, с 10--10Измерение радиоимпульсов Диапазон измерений, В --10-1501-20Пределы измерений, В --50-1502;5;10;20 Частота заполнения, МГц --До 300До 300Основная погрешность измерения, % --± (4-6)± (4-10)Измерение синусоидального напряжения Диапазон измерений, В -0,0003-1-1-20Пределы измерений, В -0,003; 0,01; 0,03; 0,1; 0,3; 1-2; 5; 10; 20Диапазон частот -30 Гц- 500 кГц-20 Гц - 300 МГцОсновная погрешность измерения, %-± (4-10)-± (4-Ю)пределы температур, °С относительная влажность воздуха, %, 80909095при температуре, °С 20252530Питание: напряжение, В, частотой, Гц: 50 220220220220Потребляемая мощность, ВА 3010014025Габаритные размеры, мм310x320x200328x250x211285х280х390320х290х220Масса, кг79157.5Основные характеристикиВ4-11B4-I2В4-14В4-16Измерение видеоимпульсов Диапазон измерений, В 1-1500,001-1 1000,01-1 1000,02-2 20с делителем до, В Пределы измерений, В 1-15; 10-1500,003; 0,01; 0,03; 0,1; 0,3; 10,03; 0,1; 0,3; 10,1; 0,2; 0,5; 1; 2Основная погрешность измерения, %± (0,2- 1,7)± (4-6)± (4-10)±2±-10 мВ Длительность импульсов, мкс0,01-250,1-3000,003-100-Длительность фронта импульсов, нс-Более 150,5-100Более 1Частота следования импульсов, кГцБолее 0,020,05-1000,025-Более 0,1СкважностьБолее 2Более 5-Входное сопротивление, МОм, 33 кОм/В10,0030,001С шунтирующей емкостью, пФ 1,51012-Время установления показаний, с 86105Измерение радиоимпульсов Диапазон измерений, В1-150-0,01-100-Пределы измерений, В 15-150-0,03; 0,1; 0,3; 1; 3; 10; 30; 100-Частота заполнения, МГцДо 1000-До 100-Основная погрешность измерения, % ±(1-12)-± (4-10) ±(1-2) мВ-Измерение синусоидального напряжения Диапазон измерений, В1,5-1500,001-10,01-100-Пределы измерений, В 15-1500,003; 0,01; 0,03; 0,1; 0,3; 10,03; 0,1; 0,3; 1; 3; 10; 30; 100-Диапазон частот20 Гц- 1000 Мгц0,5 Гц- 5 МГц До 100 МГц-Основная погрешность измерения, % ± (0,2-12)± (4-6)± (4-10)±2 мВ-Пределы температур, 0С - 30 +50-30 - +50+ 5+40+ 10+35относительная влажность воздуха, %,80989580При температуре, 0С 20353020Питание: напряжение, В, частотой, 50 Гц: 220220220220Потребляемая мощность, В- А 100201525Габаритные размеры, мм630х350х340242x162x253360x160х260366x160x260Масса, кг3081010

  • 39. Английский физик Майкл Фарадей
    Другое Физика

    В 1830, несмотря на стесненное материальное положение, Фарадей решительно отказывается от всех побочных занятий, выполнения любых научно-технических исследований и других работ (кроме чтения лекций по химии), чтобы целиком посвятить себя научным изысканиям. Вскоре он добивается блестящего успеха: 29 августа 1831 открывает явление электромагнитной индукции явление порождения электрического поля переменным магнитным полем. Десять дней напряженнейшей работы позволили Фарадею всесторонне и полностью исследовать это явление, которое без преувеличения можно назвать фундаментом, в частности, всей современной электротехники. Но сам Фарадей не интересовался прикладными возможностями своих открытий, он стремился к главному исследованию законов Природы. Открытие электромагнитной индукции принесло Фарадею известность. Но он по-прежнему был очень стеснен в средствах, так что его друзья были вынуждены хлопотать о предоставлении ему пожизненной правительственной пенсии. Эти хлопоты увенчались успехом лишь в 1835. Когда же у Фарадея возникло впечатление, что министр казначейства относится к этой пенсии как к подачке ученому, он направил министру письмо, в котором с достоинством отказался от всякой пенсии. Министру пришлось просить извинения у Фарадея. В 1833-34 Фарадей изучал прохождение электрических токов через растворы кислот, солей и щелочей, что привело его к открытию законов электролиза. Эти законы (Фарадея законы) впоследствии сыграли важную роль в становлении представлений о дискретных носителях электрического заряда. До конца 1830-х гг. Фарадей выполнил обширные исследования электрических явлений в диэлектриках.

  • 40. Английский физик Эрнест Резерфорд
    Другое Физика

    Опираясь на дальнейшие исследования, проведенные в Макгиллском университете в 1901-1902 гг., Резерфорд и его коллега Фредерик Содди изложили основные положения созданной ими теории радиоактивности. В соответствии с этой теорией радиоактивность возникает тогда, когда атом отторгает частицу самого себя, которая выбрасывается с огромной скоростью, и эта потеря превращает атом одного химического элемента в атом другого. Выдвинутая Резерфордом и Содди теория вступала в противоречие с рядом ранее существовавших представлений, включая признаваемую всеми долгое время концепцию, согласно которой атомы являются неделимыми и неизменяемыми частицами. Резерфорд провел дальнейшие эксперименты для получения результатов, которые подтвердили выстраиваемую им теорию. В 1903 г. он доказал, что альфа-частицы несут положительный заряд. Поскольку эти частицы обладают измеримой массой, «выбрасывание» их из атома имеет решающее значение для превращения одного радиоактивного элемента в другой. Созданная теория позволила Резерфорду также предсказать, с какой скоростью различные радиоактивные элементы будут превращаться в то, что он называл дочерним материалом. Ученый был убежден, что альфа-частицы неотличимы от ядра атома гелия. Подтверждение этому было получено, когда Содди, работавший тогда с английским химиком Уильямом Рамзаем, открыл, что эманация радия содержит гелий, предполагаемую альфа-частицу.