Информация по предмету Физика

  • 41. Анизотропные кристаллы. Кристаллография. Сингония высшего, среднего, низшего порядков
    Другое Физика

    . Оси симметрии. Осью симметрии называется воображаемая прямая, при повороте вокруг которой всегда на один и тот же угол происходит совмещение равных частей фигуры. При повороте на 360 градусов совмещение граней в разных кристаллах возможно два, три, четыре или шесть раз (т.е. при каждом повороте на 180, 120, 90 и 60 градусов). Ось симметрии обозначается буквой L, порядок оси показывает, сколько раз при повороте на 360 градусов произойдёт совмещение каждой из граней. Так в кристаллах возможны оси второго L2, третьего L3, четвёртого L4 и шестого L6 порядков. Оси симметрии L3, L4, L6 называются осями симметрии высшего порядка. Оси симметрии питого и выше шестого порядка в силу закономерности внутреннего строения кристаллов невозможны. Ось симметрии первого порядка L1 показывает, что для совмещения фигуры с её начальным положением нужно сделать поворот на 360 градусов , это соответствует полному отсутствию симметрии, ибо любой предмет при повороте на 360 градусов вокруг любого реального направления совместится с самим собой.

  • 42. Антивещество
    Другое Физика

    Выброс антиматерии был обнаружен в результате обработки данных, получаемых с ноября 1996 года от направленного сцинтилляционного спектрометра, установленного на спутнике-обсерватории. Исследователи изучали карты и снимки галактических источников гамма-излучений, полученных со спутника, на которых, как и ожидалось, были обозначены известные области антиматерии, лежащие в плоскости галактики в центральной ее части. Неожиданностью, то есть открытием, стало то, что на картах было обнаружено компактное облако антиматерии, которое вырывалось из центра галактики перпендикулярно ее плоскости.

  • 43. Античастицы
    Другое Физика

    С современной точки зрения элементарные частицы разбиваются на две группы. Первая из них - частицы с полуцелым спином: заряженные лептоны e - , -, - , соответствующие им нейтрино и кварки u, d, c, b, t. Все эти частицы обладают и античастицами. Другая группа - это кванты полей с целым спином, переносящие взаимодействия: фотон, промежуточные бозоны слабых взаимодействий, глюоны сильных взаимодействий. Некоторые из них истинно нейтральны (, Z0), то есть все их квантовые числа равны нулю и они идентичны своим античастицам; другие (W +, W -) также образуют пары частица - античастица. Легко теперь увидеть, что все барионы, состоящие из трех кварков, должны иметь античастицы, например: нейтрон имеет состав (), антинейтрон (). Мезоны состоят из кварка и антикварка и, вообще говоря, также имеют античастицы, например: - - мезон состоит из кварков (), а + мезон состоит из кварков (). В то же время имеются мезоны, симметричные относительно замены кварков на антикварки ( например, 0,,- мезоны, куда входят пары кварков , и ); также мезоны будут истинно нейтральными.

  • 44. Аристотель (384-322гг. до н. э.)
    Другое Физика

    Физика Аристотеля не всегда была на вершине физики его времени. Стагирит не принял ни догадки пифагорейца Филолая о том, что Земля не центр мира, ни атомизм Левкиппа Демокрита, он остался на позициях геоцентризма (на два тысячелетия утвердив его) и архаического представления о веществе как совокупности четырех стихий, состоящих в свою очередь из комбинации сухого, холодного, влажного и горячего (вода влажное и холодное, земля сухое и холодное, воздух влажное и горячее, огонь сухое и горячее). Физика Аристотеля подчинена его метафизике, телеологии и теологии. Но все же в активе физики Аристотеля были и немаловажные моменты учение о вечности и несотворенности материи, движения и мира.

  • 45. Архимед
    Другое Физика

    Архимед (?287-212 гг. до н. э.) родился в городе Сиракузы на острове Сицилия. Его отец, Фидий, был математиком и астрономом. Видимо, он и оказал влияние на научные интересы Архимеда еще в детстве.Легенды рассказывают, что Архимед забывал о пище, подолгу не бывал в бане и готов был чертить везде: в пыли, пепле, на песке, даже на собственном теле. Однажды, в ванне, его вдруг осенила мысль о выталкивающей силе, действующей на погруженное в жидкость тело и, забыв обо всем, голый, бежал он по улицам Сиракуз с победным кличем: "Эврика!" ("Я нашел!"). Архимед - автор многочисленных открытий, гениальный изобретатель, известный во всем греческом мире благодаря конструкции многих механизмов: машины для орошения полей, водоподъемного механизма, системы рычагов, блоков для поднятия больших тяжестей (кранов), военных метательных аппаратов. Он соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль "Сиракосия". Крылатыми стали произнесенные тогда слова Архимеда: "Дайте мне точку опоры, и я поверну Землю". Архимед погиб от меча римского легионера. Он был поглощен работой и не заметил, что город уже занят римлянами. Когда посыльный солдат явился к нему и потребовал, чтобы он немедленно явился к Марцеллу, Архимед поморщился, лениво, как от надоедливой мухи, отмахнулся от него и, не поднимая глаз от чертежа, пробурчал: "Не мешай, я вычисляю". Солдат выхватил меч и убил его. На своей могильной плите Архимед завещал выгравировать шар и цилиндр - символы его геометрических открытий. Могила заросла травой и место это было забыто очень скоро. Лишь через 137 лет после его смерти Цицерон разыскал в Сиракузах этот могильный камень, на котором были уже стерты временем часть знаков. А потом могила опять затерялась, уже навсегда.

  • 46. Асинхронный двигатель с фазным ротором
    Другое Физика
  • 47. Ативизация познавательной деятельности учащихся посредством физического эксперимента
    Другое Физика

    Мотивы, побуждающие к приобретению знаний, могут быть различными. К ним относятся прежде всего широкие социальные мотивы: необходимо хорошо учиться, чтобы в будущем овладеть желаемой специальностью, принести больше пользы Родине, чувство долга, ответственности перед коллективом и т. д. Однако, как показывают исследования, среди всех мотивов обучения самым действенным является интерес к предмету. Интерес к предмету осознается учащимися раньше, чем другие мотивы учения, им они чаще руководствуются в своей деятельности, он для них более значим (имеет личностную ценность) и потому является действенным, реальным мотивом учения. Из этого, конечно, не следует, что обучать школьников нужно лишь тому, что им интересно. Познание труд, требующий большого напряжения. Поэтому необходимо воспитывать у учащихся силу воли, умение преодолевать трудности, прививать им ответственное отношение к своим обязанностям. Но одновременно нужно стремиться облегчать им процесс познания, делая его привлекательным. Еще К. Д. Ушинский писал: «... ученье, лишенное всякого интереса и взятое только силою принуждения... убивает в ученике охоту к учению, без которого он далеко не уйдет». Под познавательным интересом к предмету понимается избирательная направленность психических процессов человека на объекты и явления окружающего мира, при которой наблюдается стремление личности заниматься именно данной областью. Интерес мощный побудитель активности личности, под его влиянием все психические процессы протекают особенно интенсивно и напряженно, а деятельность становится увлекательной и продуктивной. «Сущность познавательного интереса в стремлении школьника проникнуть в познаваемую область более глубоко и основательно, в постоянном побуждении заниматься предметом своего интереса».

  • 48. Атомарные газоразрядные лазеры
    Другое Физика

    Упрощенная схема уровней атомов меди приведена на рис. 2.4. Два близко расположенных уровня и с временем жизни 0,4 и 0,8 мкс эффективно возбуждаются электронным ударом при накачке, осуществляемой мощным импульсным электрическим разрядом. Инверсия создается относительно метастабильных уровнейи с временем жизни около 1 мкс. Коэффициент усиления активной среды достигает 1000 дБ/м. Мощность генерации на зеленой линии (=0,51 мкм) намного больше, чем на желтой (=0,58 мкм). Длительность импульсов составляет 510 нс. Основные трудности при создании лазеров на парах меди связаны с высокой рабочей температурой, необходимой для перевода меди в парообразное состояние (более 1600°С), и исключительно высокой скоростью нарастания переднего фронта возбуждающего импульса тока (более10А/с). Наиболее распространенной является конструкция в виде эффективно охлаждаемой трубки из высокотемпературной керамики на основе оксидов Al или берилия длиной до 1 м с внутренним диаметром 16 см. Внутри трубки размещены колечки или отрезки медной проволоки, введены электроды, на которые подают крутые короткие импульсы длительностью 200-300 мкс. При этом ток в импульсе достигает 200400 А, а длительность переднего фронта составляет 0,030,1 мкс. Параметры трубки и разрядного контура подбирают так, чтобы установившаяся температура внутри трубки достигала 1600°С, а давление паров меди более 100 Па. Такой режим работы называют саморазогревным.

  • 49. Атомная энергетика
    Другое Физика

    Энергетический ядерный реактор - это устройство, в котором осуществляется управляемая цепная реакция деления ядер тяжелых элементов, а выделяющаяся при этом тепловая энергия отводится теплоносителем. Главным элементом ядерного реактора является активная зона. В нем размещается ядерное топливо и осуществляется цепная реакция деления. Активная зона представляет собой совокупность определенным образом размещенных тепловыделяющих элементов, содержащих ядерное топливо. В реакторах на тепловых нейтронах используется замедлитель. Через активную зону прокачивается теплоноситель, охлаждающий тепловыделяющие элементы. В некоторых типах реакторов роль замедлителя и теплоносителя выполняет одно и то же вещество, например обычная или тяжелая вода. Для управления работой реактора в активную зону вводятся регулирующие стержни из материалов, имеющих большое сечение поглощения нейтронов. Активная зона энергетических реакторов окружена отражателем нейтронов - слоем материала замедлителя для уменьшения утечки нейтронов из активной зоны. Кроме того, благодаря отражателю происходит выравнивание нейтронной плотности и энерговыделения по объему активной зоны, что позволяет при данных размерах зоны получить большую мощность, добиться более равномерного выгорания топлива, увеличить продолжительность работы реактора без перегрузки топлива и упростить систему теплоотвода. Отражатель нагревается за счет энергии замедляющихся и поглощаемых нейтронов и гамма-квантов, поэтому предусматривается его охлаждение. Активная зона, отражатель и другие элементы размещаются в герметичном корпусе или кожухе, обычно окруженном биологической защитой.

  • 50. Атомная энергетика, атомные станции
    Другое Физика

    Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее наш век атомным, прибавило к запасам энергетического ископаемого топлива существенный клад ядерного горючего. Запасы урана в земной коре оцениваются огромной цифрой 1014 тонн. Однако основная масса этого богатства находится в рассеяном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4*109 тонн. Однако богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана,которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонн естественного урана. Так что эти запасы позволяют, как сказал академик А.П.Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время".

  • 51. Атомная энергетика, проблемы развития и принцип действия
    Другое Физика

    Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее наш век атомным, прибавило к запасам энергетического ископаемого топлива существенный клад ядерного горючего. Запасы урана в земной коре оцениваются огромной цифрой 1014 тонн. Однако основная масса этого богатства находится в рассеяном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4*109 тонн. Однако богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана,которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонн естественного урана. Так что эти запасы позволяют, как сказал академик А.П.Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время".

  • 52. Атомная энергетика. Использование и перспективы развития
    Другое Физика

    Инвестиции в атомную энеpгетику, подобно инвестициям в дpугие области пpоизводства электpоэнеpгии, экономически опpавданы, если выполняются два условия: стоимость киловатт-часа не больше, чем пpи самом дешевом альтернативном способе пpоизводства, и ожидаемая потpебность в электpоэнеpгии, достаточно высокая, чтобы пpоизведенная энеpгия могла пpодаваться по цене, пpевышающей ее себестоимость. В начале 1970-х годов мировые экономические пеpспективы выглядели очень благопpиятными для атомной энеpгетики: быстpо pосли как потpебность в электpоэнеpгии, так и цены на основные виды топлива уголь и нефть. Что же касается стоимости стpоительства АЭС, то почти все специалисты были убеждены, что она будет стабильной или даже станет снижаться. Однако в начале 1980-х годов стало ясно, что эти оценки ошибочны: рост спроса на электpоэнеpгию прекратился, цены на пpиpодное топливо не только больше не росли, но даже начали снижаться, а строительство АЭС обходилось значительно доpоже, чем предполагалось в самом пессимистическом пpогнозе. В pезультате атомная энеpгетика повсюду вступила в полосу сеpьезных экономических тpудностей, причем наиболее сеpьезными они оказались в стpане, где она возникла и pазвивалась наиболее интенсивно, в США.

  • 53. Атомные и океанские электростанции
    Другое Физика

    Электрический ток выполняет три важные функции. Во-первых, он создает плазму. Во-вторых, разогревает ее до ста миллионов градусов. И, наконец, ток создает вокруг себя магнитное поле, то есть окружает плазму магнитными силовыми линиями. В принципе силовые линии вокруг плазмы должны были бы удержать ее в подвешенном состоянии и не дать плазме возможность соприкоснуться со стенками камеры. Однако удержать плазму в подвешенном состоянии не так просто. Электрические силы деформируют плазменный проводник, не обладающий прочностью металлического проводника. Он изгибается, ударяется о стенку камеры и отдает ей тепловую энергию. Для предотвращения этого поверх тороидальной камеры надевают еще катушки, создающие в камере продольное магнитное иоле, оттесняющее плазменный проводник от стенок. Только и этого окачивается мало, поскольку плазменный проводник с током стремится растянуться, увеличить свой диаметр. Удержать плазменный проводник от расширения призвано также магнитное поле, которое создается автоматически, без посторонних внешних сил. Плазменный проводник помещают вместе с тороидальной камерой еще в одну камеру большего размера, сделанную из немагнитного материала, обычно меди. Как только плазменный проводник делает попытку отклониться от положения равновесия, в медной оболочке по закону электромагнитной индукции возникает индукционный ток, обратный по направлению току в плазме. В результате появляется противодействующая сила, отталкивающая плазму от стенок камеры.

  • 54. Атомные пули
    Другое Физика

    Однако в распоряжении ученых были лишь микрограммы этого материала. Программа получения и накопления калифорния - отдельная глава в истории ядерного проекта СССР. О секретности проекта говорит хотя бы тот факт, что практически никому не известно имя ближайшего сподвижника Курчатова, академика Михаила Юрьевича Дубика, которому и было поручено в кратчайшие сроки решить проблему наработки ценного изотопа. Разработанная академиком технология до сих пор остается секретной, хотя кое-что все-таки стало известно. Советскими учеными-ядерщиками были изготовлены специальные мишени-ловушки нейтронов, в которых при взрывах мощных термоядерных бомб из плутония, извлеченного из отработанного ядерного топлива, получался калифорний. Традиционная наработка изотопов в реакторе стоила бы гораздо дороже, так как при термоядерных взрывах плотность потока нейтронов в миллиарды раз больше. Из выделенного калифорния была изготовлена начинка уникальных пуль - деталь, напоминающая заклепку или гантель. Крошечный заряд специальной взрывчатки, расположенной у донышка пули, сминал эту штуку в аккуратный шарик, за счет чего достигалось сверхкритическое состояние. В случае пуль калибра 7,62 мм диаметр этого шарика составлял почти 8 мм. Для срабатывания взрывчатки использовался контактный взрыватель, специально разработанный для этой программы. В итоге пуля получилась перетяжеленной, и для того чтобы сохранить привычную для стрелка-пулеметчика баллистику, пришлось изготовить и специальный порох, который давал пуле правильный разгон в стволе пулемета.

  • 55. Атомные реакторы
    Другое Физика
  • 56. Безопасность АЭС
    Другое Физика

    Ещё одна опасность атомной энергетики радиоактивные отходы. Каким образом избавляются сегодня от радиоактивных отходов, образующихся в процессе работы ядерного топлива? Первое, что делают, стараются собрать все, даже ничтожно малые количества загрязнённых материалов. Процесс очищения загрязнённых предметов, одежды, материалов и даже людей называется дезактивацией. С помощью специальных моющих растворов смывают мельчайшие радиоактивные частицы со всех дезактивируемых предметов или с людей. Затем тщательно собранные таким образом радиоактивные вещества, смешанные с очищающей жидкостью, упаривают и сгущают, чтобы по возможности уменьшить их в объёме. После этого густой осадок либо закачивают в специальные скважины, либо бетонируют, заливают жидким стеклом. Все эти способы дезактивации позволяют лишь собрать и изолировать от природы и людей большую часть радиоактивных веществ, образовавшихся в процессе использования ядерного топлива. Но окончательно безопасными ядерные отходы станут очень не скоро иные из них будут представлять опасность и через миллионы лет, до полного естественного распада их ядер и превращения в другие, не радиоактивные вещества. Найти же место, где можно было бы хранить такие отходы столь долго и при этом надёжно, становится всё труднее.

  • 57. Беккерель Антуан Анри
    Другое Физика

    Среди участников заседания был Анри Беккерель. Он решил проверить гипотезу Пуанкаре. Еще в феврале 1896 года Шарль Анри демонстрировал действие флюорисцирующего сернистого цмнка на фотопластинку, завернутую в черную бумагу. Беккерель решил использовать соли урана. Он взял из коллекции минералов своего отца двойной сульфат уранила калия. Обернув фотопластинку черной бумагой, он положил на нее металическую пластинку причудливой формы, покрытую слоем урановой соли, и выставил на несколько часов на яркий солнечный свет. После проявленя пластинки на ней было отчетливо видно изображение металической фигуры,которая покрывалась до опыта слью урана. Повторные опыты Беккереля дали аналогичные результат, и 24 февраля 1896 года он доложил академии о результатах опытов. Казалось, что гипотеза Пуанкаре полностью подтверждается. Но осторожный Беккерель решил поставить контрольные опыты. К концу февраля он приготовил новую пластинку. Но погода была пасмурной и оставалась такой до 1 мата. Утро 1 марта было солнечным и опыты можно было возабновить. Беккерель решил, однако, проявить пластинки, лежавшие несколько дней в темном шкафу. На проявленных пластинках четко обозначились силуэты образцов минерала, лежавших на непрозрачных экранах пластинок.

  • 58. Бесконтактные двигатели
    Другое Физика

    На рис.5, а показана схема электромагнитной системы линейного бесконтактного двигателя. Корпус индуктора 1 выполнен из ферромагнитного материала и служит внешним магнитопроводом. В корпусе расположены постоянные магниты 2, создающие поток возбуждения Фв, индуктор является подвижной частью линейного двигателя. Якорь 3 представляет собой диэлектрическую пластину, на поверхности которой методом фотолитографии выполнена печатная схема проводников 4. Якорь является неподвижной частью двигателя. Длина якоря lя больше длины индуктора lи на длину хода индуктора. Проводники якоря объединены в катушки, оси которых сдвинуты по длине якоря. Выводы катушек подсоединены к полупроводниковому коммутатору. На рис. 5, б показана схема кинематического звена поступательного перемещения с линейным двигателем. Якорь 3 прикреплен к неподвижной направляющей 5, а индуктор 1 к подвижной каретке 6. На направляющей по осям катушек якоря расположены сигнальные элементы, вызывающие срабатывание датчиков положения индуктора относительно якоря, расположенных на каретке.

  • 59. Билеты по Курсу физики для гуманитариев СПБГУАП
    Другое Физика

    12. Ïîëÿ êîíñåðâàòèâíûõ ñèë. Ïîòåíöèàëüíàÿ ýíåðãèè . 13. Ç-í ñîõðàíåíèÿ ìåõàíè÷åñêîé ýíåðãèè. Êðîìå êèí. ýíåðãèè åñòü åùå ïîòåíöèàëüíàÿ ýí-ÿ, äëÿ êîò. íå ñóù-âóåò îáùåé ôîðìóëû. Ýòî ïîíÿòèå ìîæíî ââåñòè ëèøü äëÿ îãðàíè÷. êëàñà ñèë - äëÿ êîíñåðâàòèâíûõ ñèë. Ýòî ñèëû, ðàáîòà êîò. ïî çàìêíóòîé òðàåêòîðèè =à íóëþ. Ñóùåñòâóåò äðóãîå îïðåäåëåíèå êîíñåðâàòèâíûõ ñèë. Êîíñåðâàòèâíûìè ñèëàìè íàçûâàþòñÿ òàêèå ñèëû, ðàáîòà â ïîëå êîò. íå çàâèñèò îò òðàåêòîðèè è îïð-ñÿ òîëüêî íà÷àëüíûì è êîíå÷íûì ïîëîæåíèåì ñèñòåìû. Íåòðóäíî ïîêàçàòü, ÷òî ýòè îïðåäåëåíèÿ ðàâíîçíà÷íû. Äåéñòâèòåëüíî, if ðàáîòà íå çàâèñèò îò òðàåêòîðèè, òî ïðè îáðàòíîì äâèæåíèè âäîëü òðàåêòîðèè îíà áóäåò òàêàÿ æå, íî ñ îáðàòíûì çíàêîì. Ïðîñóììèðîâàâ äâèæåíèå ïî çàìêíóòîé òðàåêòîðèè, ñîñòîÿùåé èç 2õ êðèâûõ, ïîëó÷àåì â ñóììå 0. Êîíñåðâàòèâíûå ñèëû, êàê ïðàâèëî, çàâèñÿò òîëüêî îò ïîëîæåíèÿ òåëà, à íåêîíñåðâàòèâíûå - îò åãî ñêîð.. Ðàññìîòðèì ïðèìåðû ïîëåé êîíñåðâàòèâíûõ è íåêîíñåðâàòèâíûõ ñèë. Ñèëû òðåíèÿ èëè ñîïðîòèâëåíèÿ ÿâë. íåêîíñåðâàòèâíûìè. Èõ íàïðàâë. îïð-ñÿ ñêîð-òüþ ïåðåìåùåíèÿ òåë. Ñèëû òðåíèÿ âñåãäà íàïðàâëåíû â ñòîðîíó, ïðîòèâîïîëîæíóþ íàïðàâë. äâèæåíèÿ, ò.å.: F(âåêòîð)òð=-(v(âåêòîð)/v)Fòð. Çäåñü v(âåêòîð)/v - åäèíè÷íûé âåêòîð, íàïðàâëåííûé âäîëü ñêîð. òåëà. Ðàáîòà ñèëû òðåíèÿ ïî çàìêíóòîé òðàåêòîðèè l =à: A(l)= 'èíòåãðàë c êðóæêîì îò (l)'(-Fòð((v(âåêòîð)/v)dr(âåêòîð)))= -'èíòåãðàë îò t1 äî t2'(Fòð((v(âåêòîð)/v)dr(âåêòîð)/dt)dt)= -'èíòåãðàë îò t1 äî t2'(Fòð((v(âåêòîð)v(âåêòîð))/v)dt)= -'èíòåãðàë îò t1 äî t2'(Fòð*vdt)=- 'èíòåãðàë c êðóæêîì îò (l)'(Fòð*dl). Êðóæîê ó èíòåãðàëà - èíòåãðèðîâàíèå ïî çàìêíóòîé òðàåêòîðèè. Ïîñëåäíåå ïîäûíòåãðàëüíîå âûðàæåíèå ñêàëÿðíîå, îíî âñåãäà ïîëîæèòåëüíî, ñëåä., ðàáîòà ñèëû òðåíèÿ íà çàìêíóòîé òðàåêòîðèè âñåãäà îòðèöàòåëüíà. Ýòà ðàáîòà òåì áîëüøå ïî ìîäóëþ, ÷åì äëèíåå ïóòü. Âûâîä: ñèëû òðåíèÿ - íåêîíñåðâàòèâíûå ñèëû. Ïðèìåðîì ïîëÿ êîíñåðâàòèâíûõ ñèë ÿâë. ïîëå òÿãîòåíèÿ âáëèçè ïîâ-òè Çåìëè. Ðàáîòà, êîò. çàòðà÷èâàåòñÿ íà ïåðåìåùåíèå òåëà èç ïîëîæåíèÿ r1 â ïîëîæ. r2 =à: A12='èíòåãðàë îò r1 äî r2'(mg(âåêòîð)dr(âåêòîð))='èíòåãðàë îò r1 äî r2'(mg dr(g))=-mg'èíòåãðàë îò h1 äî h2'(dh)=mg(h1-h2). Èç ýòîé ôîðìóëû âèäíî, ÷òî ðàáîòà ñèëû òÿæåñòè çàâèñèò îò âåëè÷èíû ýòîé ñèëû è îò ðàçíîñòè íà÷àëüíîé è êîíå÷íîé âûñîò òåëà. Íèêàêîé çàâèñèì. îò ôîðìû òðàåêòîðèè íåò, à çí÷èò, ñèëà òÿæåñòè êîíñåðâàòèâíà. Òàêæå ïðîñòî ìîæíî äîêàçàòü, ÷òî êîíñåðâàòèâíûìè ÿâë. ñèëû, ñîçäàþùèå îäíîðîäíîå ïîëå. Ïîëå ñèë íàç. îäíîðîäíûì, if â ëþá. òî÷êå ýòîãî ïîëÿ ñèëà, äåéñòâóþùàÿ íà òåëî îäèíàêîâà ïî âåëè÷èíå è íàïðàâë.. Êîíñåðâàòèâíûìè ÿâë. òàêæå ïîëÿ öåíòðàëüíûõ ñèë. Öåíòðàëüíûìè íàçûâàþòñÿ ñèëû, íàïðàâëåííûå âäîëü ëèíèè âçàèìäåéñò. òåë, âåëè÷èíà êîò. çàâèñèò òîëüêî îò ðàññòîÿíèÿ ìåæäó òåëàìè. Òàêîìó óñëîâèþ óäîâëåòâîðÿþò, íàïðèìåð, êóëîíîâñêèå ñèëû è ñèëû òÿãîòåíèÿ.  ïîëå êîíñåðâàòèâíûõ ñèë ìîæíî ââåñòè åùå 1 âèä ìåõàíè÷åñêîé ýíåðãèè - ïîòåíöèàëüíóþ ýíåðãèþ. Ïðåæäå ÷åì åå ââîäèòü, âûáèðàþò ò÷êó, â êîò. îíà =à íóëþ. Ïîòåíöèàëüíàÿ ýí-ÿ òåëà â ëþá. òî÷êå ïðîñò-âà îïð-ñÿ ðàáîòîé, êîò. íóæíî ñîâåðøèòü, ÷òîáû ïåðåìåñòèòü òåëî èç ýòîé ò÷êè â ò÷êó ñ íóëåâîé ïîò. ýíåðãèåé. Îòìåòèì 2 ñóùåñòâåííûõ ìîìåíòà, âûòåêàþùèõ èç ýòîãî îïðåäåëåíèÿ. Âî-ïåðâ., ïîñêîëüêó ðàñì-åòñÿ ïîëå êîíñåðâàòèâíûõ ñèë, çíà÷. ïîò. ýíåðãèè òåëà çàâèñèò îò ïîëîæåíèÿ òåëà è âûáîðà ò÷êè íóëåâîé ïîò. ýíåðãèè è íå çàâèñèò îò ôîðìû ïóòè, ïî êîò òåëî ïåðåìåùàåòñÿ. Âî-âòîðûõ, ïîñêîëüêó âûáîð íóëÿ ïîò. ýíåðãèè ïðîèçâîëåí, çíà÷. ïîò. ýíåðãèè îïð-ñÿ ñ òî÷íîñòüþ äî àääèòèâíîé ïîñò., ñëåä. ôèç. ñìûñë èìååò ëèøü ðàçíîñòü ïîòåíöèàëüíûõ ýíåðãèé èëè ïðèðàùåíèå ïîò. ýíåðãèè, íî íå ñàìà ýí-ÿ. Íà ðèñ.11.3 ìû ïðåäñòàâèëè 3 ò÷êè â ïðîñò-âå ïîëÿ êîíñåðâàòèâíûõ ñèë: ò÷êó (b), ò÷êó (ñ) è ò÷êó (î), ïîòåíöèàëüíóþ ýíåðãèþ â êîò. áóäåì ñ÷èòàòü =îé 0. Îáîçíà÷èì ÷åðåç Abo ðàáîòó, êîò. ñîâåðøàåòñÿ ïðè ïåðåíîñå òåëà èç ò÷êè (b) â ò÷êó (o). If ïåðåìåùàòü òåëî èç ò÷êè (o) â ò÷êó (b), òî ñîâåðøàåìàÿ ïðè ýòîì ðàáîòà áóäåò =à Aob=-Abo, ïîñêîëüêó ìåíÿåòñÿ íàïðàâë. äâèæåíèÿ, íî íå ìåíÿþòñÿ äåéñòâóþùèå íà òåëî ñèëû. Ðàáîòó ïî ïåðåìåùåíèþ òåëà èç ò÷êè (c) â ò÷êó (o) áóäåì îáîçíà÷àòü, êàê Àño. Òî÷íî òàêæå Àñî=-Àîñ. Ïðè ïåðåìåùåíèè òåëà èç ò÷êè (b) â ò÷êó (c) ñîâåðøàåòñÿ ðàáîòà Abc=-Acb. Ñîãëàñíî îïðåäåëåíèþ ïîò. ýíåðãèè è ôîðìóëå (11.3) äëÿ âû÷èñëåíèÿ ðàáîòû èìååì: Eï(b)=A(b0)= 'èíòåãðàë îò b äî 0'(F(âåêòîð)dr(âåêòîð)); Eï(ñ)=A(ñ0)= 'èíòåãðàë îò ñ äî 0'(F(âåêòîð)dr(âåêòîð)); (11.8). Eï(b)- Eï(c)= 'èíòåãðàë îò b äî 0'(F(âåêòîð)dr(âåêòîð))- 'èíòåãðàë îò ñ äî 0'(F(âåêòîð)dr(âåêòîð))= 'èíòåãðàë îò b äî 0'(F(âåêòîð)dr(âåêòîð))+ 'èíòåãðàë îò 0 äî c'(F(âåêòîð)dr(âåêòîð))= 'èíòåãðàë îò b äî c'(F(âåêòîð)dr(âåêòîð))=A(bc) (11.9) Îêàçàëîñü äîêàçàííûì ñëåäóþùåå óòâ.: ðàáîòà, ñîâåðøàåìàÿ ïðè ïåðåìåùåíèè òåëà â ïîëå êîíñåðâàòèâíûõ ñèë èç ò÷êè (b) â ò÷êó (c), =à ðàçíîñòè ïîòåíöèàëüíûõ ýíåðãèé òåëà â òî÷êàõ (b) è (c). Îäíàêî, ýòà æå ðàáîòà =à ðàçíîñòè êèíåòè÷åñêèõ ýíåðãèé â òî÷êå (ñ) è (b). A(bc)=Eê(b)-Eê(ñ)=Eï(ñ)-Eï(b) => Eê(b)+Eï(b)=Eê(ñ)+Eï(ñ) (11.10) Ïîëó÷èëîñü, ÷òî ñóììà êèí. è ïîò. ýíåðãèè òåëà, êîò. íàç. ïîëíîé ìåõàíè÷åñêîé ýíåðãèåé òåëà, îêàçàëàñü íåèçìåííîé. Òîæå ñàìîå ñïðàâåäëèâî è äëÿ ñèñòåìû ìåõàíè÷åñêèõ òåë. Ïîëó÷èâøååñÿ óòâ. íîñèò íàç. ç-íà ñîõðàíåíèÿ ìåõàíè÷åñêîé ýíåðãèè: ïîëíàÿ ìåõàíè÷åñêàÿ ýí-ÿ èçîëèðîâàííîé ñèñòåìû â êîò. äåéñòâóþò êîíñåðâàòèâíûå ñèëû îñòàåòñÿ íåèçìåííîé. Ìåæäó êîíñåðâàòèâíûìè ñèëàìè è ïîò. ýíåðãèåé äîëæíà áûòü ñâÿçü, ïîñêîëüêó ïîòåíöèàëüíàÿ ýí-ÿ ââîäèòñÿ òîëüêî â ïîëå êîíñåðâàòèâíûõ ñèë. Íàéäåì ýòó ñâÿçü äëÿ ïðîñòåéøåãî ñëó÷àÿ, êîãäà ïîòåíöèàëüíàÿ ýí-ÿ çàâèñèò òîëüêî îò 1îé êîîðäèíàòû. Ïðèìåðîì ìîæåò ñëóæèò ïîòåíöèàëüíàÿ ýí-ÿ âáëèçè ïîâ-òè Çåìëè, ê íåìó è îáðàòèìñÿ. Ïóñòü îñü (oy) íàïðàâëåíà âåðòèêàëüíî ââåðõ è èìååò íîëü íà ïîâ-òè Çåìëè. Òîãäà ïîòåíöèàëüíàÿ ýí-ÿ çàâèñèò òîëüêî îò êîîðäèíàòû y è =à: Eï=mgy. Âîçüìåì ÷àñòíóþ ïðîèçâîäíóþ ïî êîîðäèíàòå y îò ëåâîé è ïðàâîé ÷àñòåé =ñòâà: dEï/dy=mg. Ñïðàâà ñòîèò ñèëà òÿæåñòè, êîò. íàïðàâëåíà ââåðõ, ò.å. ïðîòèâ îñè (oy). Ïî-âèäèìîìó, ïðîèçâîäíîé, ñòîÿùåé â ëåâîé ÷àñòè =ñòâà òîæå ìîæíî ïðèïèñàòü íàïðàâë.; åå ïðîåêöèÿ íà îñü (oy) áóäåò =à (dEï/dy)'subscript y'=-mg=-F'subscript y'.  ñëó÷àå, êîãäà äåéñòâóþùàÿ ñèëà èìååò ïðîåêöèè íà âñå êîîðäèíàòíûå îñè, ìîæíî çàïèñàòü àíàëîãè÷íûå âûðàæåíèÿ è äëÿ ïðîåêöèé íà äðóã. îñè. Fx=-dEï/dx; Fy=-dEï/dy; Fz=-dEï/dz (11.11) Äëÿ ñèëû, òàêèì îáðçîì, ñïðàâåäëèâî âûðàæåíèå: F(âåêòîð)=-(e(âåêòîð)x(dEï/dx)+ e(âåêòîð)y(dEï/dy)+ (âåêòîð)z(dEï/dz))=-( e(âåêòîð)x(d/dx)+e(âåêòîð)y(d/dy)+e(âåêòîð)z(d/dz))Eï= -grad Eï (11.12). Ãðàäèåíò ïîò. ýíåðãèè. Îòìåòèì íåêîòîðûå ñâ-âà ýòîãî âåêòîðà. Îñîáåííîñòü åãî ñîñò. â òîì, ÷òî âäîëü êîîðäèíàòíûõ îñåé íóæíî îòêëàäûâàòü íå ÷èñëà, à ìàòåìàòè÷åñêèå îïåðàöèè äèôôåðåíöèðîâàíèÿ ïî ñîîòâåòñòâóþùåé êîîðäèíàòå. Çà ãðàäèåíòîì îáÿçàòåëüíî äîëæíà ñòîÿòü ñêàëÿðíàÿ ô-ÿ, ê êîò. îí ïðèìåíÿåòñÿ. Ãðàäèåíò ïîò. ýíåðãèè èìååò íàïðàâë., â êîò. ïîòåíöèàëüíàÿ ýí-ÿ óâåëè÷èâàåòñÿ áûñòðåå âñåãî, è âåëè÷èíó, ðàâíóþ ñêîð. ýòîãî óâåëè÷åíèÿ, if äâèãàòüñÿ â ýòîì íàïðàâëåíèè. Èç ñêàçàííîãî ñëåä., ÷òî ñèëû ïîëÿ çàñòàâëÿþò òåëî äâèãàòüñÿ â íàïðàâëåíèè ìèíèìóìà ïîò. ýíåðãèè. Âñå åñòâåíûå ïðîöåñû ñòðåìÿòñÿ ïðèâåñòè ñèñòåìó ê ìèíèìóìó ïîò. ýíåðãèè. Ýòîò âûâîä ñïðàâåäëèâ íå òîëüêî äëÿ ìåõàíèêè, íî è äëÿ äðóãèõ ðàçäåëîâ ôèçèêè è åñòåñòâîçíàíèÿ.

  • 60. Билеты по физике для 8 класса
    Другое Физика

    №1.1)Какие превращения происходят при подъёме шара и его падении? 2)Как изменится состояние шара и плиты при их соударении? 3)В какую энергию превратится механическая при ударе о плиту? 4)Какую энергию называют внутренней? 5)От чего зависит внутренняя энергия? 6)Какими 2 способами можно изменить внутреннюю энергию? 7)Опишите опыт по изменению внутренней энергии когда над телом совершают работу? 8) Опишите опыт по изменению внутренней энергии когда тело совершает работу? 9)Что такое теплопередача? 10)Объясните нагревание ложки опущенной в горячую воду? Отв:1.Когда подняли шар -сообщили потенциальную энергию. При падении она уменьшается и постепенно увеличивается кинетическая энергия.2.Шар и плита деформировались,t>. 3.Механическая энергия ,которой обладал шар в начале опыта, не исчезла, а перешла в энергию молекул.4.Энергию движения и взаимодействия частиц, из которых состоит тело, назыв. внутренней энергией.6.Механическая работа, теплопередача.7.Тонкостенная трубка, налит эфир, обвивают верёвкой и двигают, эфир закипает и пар вытолкнул пробку. Вн.эн. эфира >,т.к. он закипел. 8.Толстостенный сосуд, в специальное отверст, накачивают воздух с водяным паром, пробка выскакивает, появляется туман=>внутренняя энергия<.9.Процесс изменения внутренней энергии без совершения работы над телом назыв. теплопередачей.10.Сначала скорость и кинетическая энергия горяч. воды>чем скорость и кинетическая энергия металла. Молекулы горячей воды передают кинетическую энергию частицам металла. t воды<, t металла>, постепенно они сравняются. Лабор. Приб. и матер: амперметр, вольтметр, резистор, ключь, батарея, соед. пров .N=It(Вт),A=Nt(Дж)