Информация по предмету Физика

  • 81. Вещество в состоянии плазмы
    Другое Физика

    где k так называемая постоянная Больцмана, равная 1,38 эрг/град. Из-за различия в величине средней кинетической энергии электронов, ионов и нейтральных частиц в плазме вместо одной общей температуры следует различать три разные температуры электронную Te, ионную Ti и атомную T0. Обычно Te >> Ti > T0 где “>>” означает «во много раз больше». Очень большое различие между Te и Ti, характерное для большинства форм газового разряда, обусловлено громадной разницей в величине массы электронов и ионов. Внешние источники электрической энергии, с помощью которых создаётся и поддерживается газовый разряд, передают энергию непосредственно электронам плазмы, т.к. именно лёгкие электроны являются носителями электрического тока. Ионы приобретают свою энергию благодаря столкновениям с быстро движущимися электронами. Однако при каждом отдельном столкновении из-за большого различия в массе лёгкий электрон передаёт иону лишь небольшую часть своей кинетической энергии. Простой анализ, основанный на применении закона сохранения энергии и закона сохранения суммарного количества движения, показывает, что если тело малой массы m сталкивается упруго с телом во много раз большей массы M, то относительная доля кинетической энергии, которую легкое тело в состоянии передать тяжёлому, не может превысить . Отношение массы электрона к массе иона равно 1 1840 A, где A атомный вес вещества, которому принадлежат ионы. Следовательно наибольшая величина, передаваемой энергии соствляет всего . Поэтому электрон должен испытать очень много столкновений с ионами, для того, чтобы полностью отдать имеющийся у него излишек энергии. Поскольку параллельно процессам, при которых происходит обмен энергией между электронами и ионами, идёт процесс приобретения энергии электронами от источников электрического тока, питающего разряд, в плазме при газовом разряде всё время поддерживаеться большой перепад температу между электронами и ионами. Так, например, в упоминавшихся выше газоразрядных приборах величина Te обычно лежит в пределах нескольких десятков тысяч градусов, в то время как величины Ti и T0 не превышают одной-двух тысяч градусов. При дуговом разряде, который используется в электросварке, электронная и ионная температуры ближе друг к другу вследствие того, что в этом случае разряд происходит в газе с большой плотностью и частые столкновения между электронами и ионами быстро выравнивают разность температур. При некоторых специальных условиях в сильно ионизированной плазме ионная температура может значительно превысить электронную. Такие условия возникают, например, при кратковременных разрядах большой мощности в экспериментальных установках. Например, можно взять угольные электроды, создать высокое давление, и подвести ток большой силы. В этом случае в узком межэлектродном пространстве возникнет сильно ионизированная плазма при температуре 50 000 K.

  • 82. Взаимодействие коротких акустических импульсов с неоднородностями на поверхности твердого тела
    Другое Физика

    Поглощение лазерного излучения в твердом теле и последующая релаксация фотовозбуждения приводят к деформации кристаллической решетки, что проявляется в виде упругих волн распространяющихся из области фотовозбуждения. При этом возбуждение акустических волн в среде возможно за счет различных механизмов. Их можно разделить на два класса - линейный и квадратичный по амплитуде электромагнитного поля. Линейные по полю механизмы - пьезоэлектрический и пьезомагнитный - приводят к возбуждению звука той же частоты, что и электромагнитная волна. При этих механизмах происходит фактически в квазистационарном поле. Поэтому при воздействии лазерного излучения на вещество возбуждение звука происходит за счет квадратично-нелинейных по полю эффектов: электро- и магнитострикции, теплового эффекта и деформационного механизма [1,9]. В этом случае акустические колебания возбуждаются не на частоте световой волны, а на частоте модуляции интенсивности, которая уже попадает в акустический диапазон. Фактически электрострикция может быть существенна только в прозрачных средах и на высоких ультразвуковых частотах. В области звуковых и ультразвуковых частот основным механизмом возбуждения звука является тепловой. Исключения из этого правила возможны в тех случаях, когда поглощенная световая энергия преобразуется в тепловую не сразу либо не полностью. Длительная задержка между моментом поглощения света и моментом, когда поглощенная энергия полностью преобразуется в тепловое движение среды, может реализоваться если энергии оптических квантов достаточно для отрыва валентных электронов от атомов. Это связано с тем, что рождающийся свободный электрон может длительное время не возвращаться в равновесное состояние. Отрыв электронов приводит к изменению сил взаимодействия между атомами. В случае твердых тел это должно повлечь за собой изменение плотности вещества, совершенно не связанное с его нагревом. Такой механизм оптической генерации звука называется деформационным. При использовании лазеров видимого и инфракрасного диапазонов длин волн данный механизм оптико-акустического эффекта может играть важную роль в полупроводниковых материалах. Числовые оценки [11] показывают, что в таких полупроводниках как Ge, Si, GaAs деформационный механизм на порядок эффективнее, чем тепловой. Однако в общем случае насыщение роста концентрации фотовозбужденных носителей может приводить к существенному преобладанию теплового механизма. Уровень оптико-акустического сигнала пропорционален переменной части светового потока. Поскольку лазеры импульсного действия позволяют получать существенно более высокие интенсивности света, чем лазеры непрерывного действия, для лазерной оптоакустики является типичным возбуждение широкого акустического спектра- звуковых видеоимпульсов. В конечном итоге рассмотренные выше механизмы приводят к генерации продольных и поперечных волн. В продольной волне, или волне сжатия-разряжения смещение частиц происходит вдоль волнового вектора. Распространение такой волны сопровождается изменением расстояния между частицами среды и, как следствие, локальным изменением плотности среды. Существование поперечных волн в твердом теле обусловлено деформацией сдвига, т.е. деформацией кристалла без изменения объема. Следует отметить, что для ограниченной среды уравнения движения должны рассматриваться совместно с граничными условиями для механических и электрических величин. В частности, для свободной поверхности граничное условие заключается в отсутствии механических напряжений. Граничным условием для вектора электрической индукции является непрерывность его нормальных составляющих в отсутствии поверхностных зарядов [7].

  • 83. Взаимодействие нейтронов с веществом
    Другое Физика

    Интересным свойством нейтронов является их способность отражаться от различных веществ. Это отражение не когерентное, а диффузное. Его механизм таков. Нейтрон, попадая в среду, испытывает беспорядочные столкновения с ядрами и после ряда столкновений может вылететь обратно. Вероятность такого вылета носит название альбедо нейтронов данной среды. Очевидно, что альбедо тем выше, чем больше сечение рассеяния и чем меньше сечение поглощения нейтронов ядрами среды. Хорошие отражатели отражают до 90% попадающих в них нейтронов, т. е. имеют альбедо до 0,9. В частности, для обычной воды альбедо равно 0,8. Неудивительно поэтому, что отражатели нейтронов широко применяются в ядерных реакторах и других нейтронных установках. Возможность столь интенсивного отражения нейтронов объясняется следующим образом. Вошедший в отражатель нейтрон при каждом столкновении с ядром может рассеяться в любую сторону. Если нейтрон у поверхности рассеялся назад, то он вылетает обратно, т. е. отражается. Если же нейтрон рассеялся в другом направлении, то он может рассеяться так, что уйдет из среды при последующих столкновениях.

  • 84. Взаимодействие параллельных проводников с током
    Другое Физика

    быть перпендикулярна как напряженности магнитного поля В, так и проводу I. Направление силы может быть найдено или с помощью правила правого винта для векторного произведения, или обращением к модели линий магнитного поля. Модуль силы равен F=ILBsin где угол между линиями поля и проводом. Когда угол = 90°, сила максимальна и имеет направление, которое считается положительным в соответствии с правилом правой руки. Когда =0, действующая на провод сила равна нулю. Когда =270°, ток в проводе имеет противоположное по сравнению с первым случаем направление; сила максимальна, но теперь имеет направление, принимаемое за отрицательное.

  • 85. Взаимодействие тел и законы Ньютона
    Другое Физика

    Взаимодействие между удаленными телами осуществляется посредством создаваемых ими гравитационных и электромагнитных полей (например, притяжении планет к Солнцу, взаимодействие заряженных тел, проводников с током и т.п.). Механическое действие на данное тело со стороны других тел проявляется двояко. Оно способно вызывать, во-первых, изменение состояния механического движения рассматриваемого тела, а во-вторых, - его деформацию. Оба эти проявления действия силы могут служить основой для измерения сил. Например, измерения сил с помощью пружинного динамометра основанного на законе Гука для продольного растяжения. пользуясь понятием силы в механике обычно говорят о движении и деформации тела под действием приложенных к нему сил.

  • 86. Взаимодействие электронов с поверхностными акустическими волнами
    Другое Физика

    На рис. 3.183.21 приведены результаты измерений. а рис. 3.18 и 3.19 представлены кривые усиления рэлеевских (рис. 3.18, а, 3.19, а) и поперечных (рис. 3.18, б, 3.19, б) волн в образцах 1, 2 соответственно. По осям абсцисс отложена напряженность дрейфового поля в кристалле в киловольтах, по осям ординат коэффициенты усиления (затухания) в дБ/см. Длина пути в кристалле, на которой происходило усиление рэлеевских волн, составляла 7мм, для поперечных волн эта длина равнялась 11.5 мм (образец 1) и 9,4 мм (образец 2). Каждая кривая на рисунках соответствует определенному значению электропроводности а кристалла. Области значений выбирались с таким расчетом, чтобы получить максимальные на данной частоте значения коэффициентов усиления волн в кристалле. На каждом из рисунков имеется по две теоретических кривых, соответствующих граничным (максимальному и минимальному) значениям электропроводности образца (рис. 3.20, а, 3.21, а опыты с рэлеевскими волнами, рис. электропроводности для данного типа волн в данном образце. Эти кривые нанесены тонкими сплошными линиями (чтобы не увеличивать существенно размер рисунка, масштаб изменения отложен для них на правых осях ординат). На рис. 3.20 и 3.21 изображены кривые усиления шума в образцах 1 и 2 соответственно при различных значениях 3.20, б, 3.21, б опыты с поперечными волнами). Под шумом здесь понимаются тепловые колебания решетки кристалла, усиленные дрейфовым полем (волны Дебая). Естественно, что шумы измерялись в полосе пропускания схемы (2832 МГц).

  • 87. Взаимосвязь физики и химии в процессе преподавания физики в полной средней школе
    Другое Физика

    Для тех учеников, которые не имеют прочной системы знаний, решение межпредметных задач может оказаться непосильным, а их интерес к обучению снизится. Для учащихся с высоким уровнем знаний по предметам опора на межпредметные связи является необходимым условием их дальнейшего развития в процессе обучения. Поэтому в организации творческой деятельности учащихся на основе межпредметных связей ведущее место занимает учебная работа, направленная на усвоение системы предметных знаний и овладение способами их переноса и обобщения. «Научение» учащихся достигается с помощью системы тренировочных самостоятельных работ, отрабатывающих отдельные элементы умений комплексного применения знаний: распознавание межпредметных связей в учебных текстах, в отрывках из научных статей, в первоисточниках отбор фактического предметного материала для подтверждения, доказательства законов диалектики, общенаучных идей, понятий; анализ конкретных примеров (из области биологии, физики, химии, истории) с позиций общих закономерностей, категорий; осознание межпредметного характера познавательных учебных задач; самостоятельная постановка (видение) межпредметных задач, проблем на основе сравнения и анализа научных фактов пограничных предметов (биохимических, физико-химических, биофизических и т. п.); составление плана для решения межпредметной проблемы и др. Важную роль играют показ образца выполнения таких заданий, проведение установочных бесед, определяющих логику рассуждения, доводящих до осознания последовательность выполняемых действий, дифференцированный подход с учетом познавательных интересов и возможностей учащихся. Необходимы последовательные стадии в формировании умений осуществлять межпредметные связи: I пробуждение познавательного интереса учащихся к решению межпредметных задач, их распознавание и осознание ими необходимости использовать знания из разных дисциплин; IIотработка отдельных способов творческой деятельности на основе межпредметных связей; IIIсинтез частных умений в целостное умение комплексного применения знаний при решении межпредметных задач. Основйым условием успешного переноса предметных знаний выступают сходство, аналогичность структуры содержательных и процессуальных элементов в серии межпредметных познавательных задач определенного типа. На уроках необходимо побуждать учащихся к самостоятельному решению таких задач с выполнением ими действий по образцу и усвоением обобщенных ориентиров в синтезе знаний.

  • 88. Виготовлення біполярного транзистора
    Другое Физика

    Недоліком процесу виготовлення транзистора є неможливість отримання субмікронних розмірів емітера, менших за розміром мінімального розміру на літографії. Як відомо, підвищення швидкодії ІС досягається за рахунок зниження ємностей і зарядних опорів в транзисторі, цілком визначаючись шириною вікна, розкриваємо під емітер. Сучасні методи літографії дозволяють отримувати мінімальні розміри 0,8 - 1,2 мкм, а з використанням вдосконалених методів - 0,5 мкм і навіть 0,25 мкм. Однак все це потребує великих витрат і істотно ускладнює процес виготовлення ІС, знижує відсоток виходу придатних і не дозволяє керувати подальшим зниженням розмірів емітера. У той же час цей параметр є ключовим при створенні високошвидкісних біполярних ІС. Завданням цього винаходу є підвищення швидкодії транзистора за рахунок зменшення топологічних розмірів емітерний областей транзистора і отримання високого відсотка виходу придатних. Для досягнення зазначеного технічного результату в способі виготовлення біполярного транзистора, що включає формування в кремнієвої підкладці першого типу провідності прихованих шарів другого типу провідності, осадження епітаксиальні шару другого типу провідності, формування областей ізоляції і глибокого колектора, формування на поверхні першого плівки діелектрика, витравлювання в діелектрику вікна під базу, осадження перший плівки полікремнія, формування другого плівки діелектрика, розкриття в другій плівці діелектрика вікон під емітерний області транзисторів, витравлювання у вікнах під емітерний області перші плівки полікремнія, легування кремнію у вікнах під емітерний області домішкою першого типу провідності, формування пристінкового діелектрика, ізолюючого торці перші плівки полікремнія у вікнах під емітерний області, осадження другу плівки полікремнія, формування пасивних і активних базових областей і емітерний областей, створення контактів до них і металізації, вікна під базу в першу пінці діелектрика розкривають шляхом РІТ травлення, беруть в облогу першу плівку полікремнія, легують полікремній домішкою першого типу провідності, беруть в облогу другу плівку діелектрика з товщиною не менше двох похибок суміщення на літографії, формують маску фоторезиста таким чином, що кордони емітерний вікон у фоторезист проходять над вертикальними ділянками другу плівки діелектрика, утвореними на сходах вікна в першу діелектрику під базу, і розташовуються не ближче однієї похибки суміщення на літографії від кожної бокової стінки вертикального ділянки діелектрика, витравлюють шляхом РІТ травлення у вікнах фоторезиста другого плівку діелектрика на горизонтальних ділянках до полікремнія, а після осадження другого плівки полікремнія легують її домішкою другого типу провідності.

  • 89. Види енергоресурсів, їх використання і запаси
    Другое Физика

    Реальними джерелами одержання електроенергії на гідроелектричних станціях є річки Південно-Західного господарсько-економічного регіону, а саме гірські та передгірські області: Закарпатська (потенційна потужність Nп=1176 тис. кВт, потенційна енергія Еп=10,3 млрд. кВт·год), Івано-Франківська (Nп=574 тис. кВт, Еп=5,0 млрд. кВт·год), Чернівецька (Nп=301 тис. кВт, Еп=2,6 млрд. кВт·год), Львівська (Nп=296 тис. кВт, Еп=2,6 млрд. кВт·год), Київська (Nп=264 тис. кВт, Еп=2,3 млрд. кВт·год), Черкаська (Nп=212 тис. кВт, Еп=1,8 млрд. кВт·год), Чернігівська (Nп=149 тис. кВт, Еп=1,3 млрд. кВт·год) і Тернопільська (Nп=115 тис. кВт, Еп=1,0 млрд. кВт·год).

  • 90. Види захисту промислових пристроїв від перенапружень
    Другое Физика

    Особливістю даної схеми є те, що в першому ступені захисту між нульовим робочим (N) і нульовим захисним (РЕ) провідниками не встановлюється обмежувач перенапруження, оскільки захисні пристрої розташовані безпосередньо біля точки розділення PEN провідника на N і РЕ провідники. В другому ступені захисту між N і РЕ провідниками вже повинен встановлюватися обмежувач перенапруження, оскільки при видаленні від точки розділення PEN провідника і збільшенні довжини електричних кабелів індуктивність і, відповідно, індуктивний опір жив кабелів струму розряду блискавки різко зростає. В результаті цього можливо виникнення різниці потенціалів між елементами устаткування, підключеного до N і РЕ провідникам. Так само при установці захисних пристроїв дуже важливо, щоб відстань між сусідніми ступенями захисту була не менше 7-10 метрів по кабелю електроживлення. Виконання цієї вимоги необхідне для правильної роботи захисних пристроїв. У момент виникнення в силовому кабелі імпульсного грозового перенапруження, за рахунок збільшення індуктивного опору металевих жив кабелю забезпечується необхідна тимчасова затримка в зростанні імпульсу перенапруження на наступному ступені захисту, що дозволяє забезпечити почергове спрацьовування обмежувачів перенапруження від більш могутніх до менш могутніх. У разі потреби розміщення захисних пристроїв на більш близькій відстані або рядом (в одному щитку) необхідно використовувати штучну лінію затримки у вигляді дроселя з індуктивністю не менше 12 мкГн. Можна навести як приклад пристрій PRONET (ISKRA ZASCITE), дросель ДРМ (НВО «Інженери електрозв'язку») або йому подібні пристрої інших фірм виробників. При установці дроселів необхідно враховувати, що робочі струми навантаження по фазах не повинні перевищувати гранично допустимі значення, вказані в технічному паспорті на дані пристрої. Схема включення дроселів була приведена на малюнку 2.

  • 91. Виды альтернативных источников энергии
    Другое Физика

    Что такое биоэнергия? Оказывается, что с этим понятием связанно немало путаницы. Кто-то называет биоэнергией все виды топлива, полученные путем выращивания чего-либо, другие придерживаются мнения, что это непосредственно должно быть связанно с элементами природного происхождения, а для третьих понятие биоэнергии коррелирует с понятием ауры и чакр. Так чем же на самом деле является биоэнергетика? Попробуем разобраться. По определению биоэнергетика - это отрасль альтернативной энергетики, то есть энергетики, которая считается возобновляемой. Количество потребляемой энергии всем человечеством в год - просто огромно. Сможет ли хоть какой-нибудь ресурс восстанавливаться соответственно скорости его потребления? Скорей всего нет. Но почему же тогда так хвалят биоэнергетику? Все просто: биоэнергия - это совокупность целого спектра альтернативных источников энергии. Этот спектр объединяют одним общим понятием биомасса. По сути это результат жизнедеятельности всех живых организмов нашей планеты. Ежегодно прирост биомассы на планете достигает 130 млрд. тонн сухого вещества. Это соответствует 660 000 ТВтч в год, при том, что мировой общественности требуется всего лишь 15 000 ТВтч в год. Сегодня более 99% автовладельцев используют топливо, производимое из нефти. И с каждым днем количество автомобилей на дорогах растет. Нефтяное топливо едва ли можно считать возобновляемым. Количество нефти с каждым годом неумолимо уменьшается, что приводит к повышению цены на нее. А поскольку экономика многих стран только развивается, то несмотря на повышение цен, спрос на нефть все равно будет расти. Замкнутый круг, выходом из которого может стать биотопливо. Долгое время биотопливо считалось неконкурентоспособным, потому что уступало ископаемому топливу и по производимой мощности и по сложности внедрения. Но постоянно развивающиеся технологии помогли решить эти проблемы. Боитопливо бывает разных типов: - жидким: метанол, этанол, биодизель; - газообразным: водород, сжиженный нефтяной газ (пропанобутановые фракции); - твердым: дрова, уголь, солома. Недавно созданное жидкое биотопливо отличается своей экологичностью и доступностью, но помимо этого имеет и еще одно важно преимущество. Для перехода на жидкое биотопливо не понадобиться существенных изменений в структуре двигателей и оборудования. Само биотопливо представляет собой сырьё, получаемое при переработке, как правило, семян рапса, сои, стеблей сахарного тростника или кукурузы. Развивается еще много направлений получения органического топлива (например из целлюлозы). Природный газ, водород и подобное сырье нельзя отнести к возобновляемым источникам, поэтому их можно считать в определенной степени полумерой при переходе на биотопливо. К тому же, немало трудностей связанно с внедрением такой технологии. Например водородный двигатель мог бы стать очень перспективным представителем своего "семейства", но для нормального функционирования автомобиля было бы необходимо закрепить целую цистерну на крыше авто, что не очень удобно. А в сжатом состоянии водород очень взрывоопасен. На помощь пришли новейшие изобретения в области нанотехнологий - разрабатывается проект по созданию нанокапсул для хранения водорода и других взрывоопасных газов. Каждая нанокапсула (модифицированная нанотрубка) будет наполняться определенным количеством молекул газа и "закупориваться" фуллереном, что позволит разделить газ на порции, сделав его безопасным. Гораздо проще обстоит ситуация с биодизельным топливом. Боидизельное топливо - это растительное масло переэтерифицированное метанолом (иногда может использоваться этанол или изопропиловый спирт). Реакция обычно проходит при нормальном давлении и температуре 60 °С. Растительные масла получает из самых различных представителей флоры (более 20 наименований), но лидером остается Рапс. Это маслянистое растение, которое легко выращивается в сельскохозяйственных условиях. Но на этом преимущества биоэнергетики не заканчиваются. Помимо того, что она отвечает на актуальные вопросы современности о поиске альтернативных источников энергии и ее экологичности, важно отметить и материальный аспект. Импорт нефти сильно сказывается на бюджете страны (не будем забывать и о том, что с каждым годом ее стоимость увеличивается). А биотопливо наоборот дешевеет с каждым днем. Отсюда можно утверждать, что экономия при переходе на биотопливо может оказаться весьма существенной. Более того, в феврале 2006 года Евросоюзом был принят документ "Стратегия для биотоплива", который описывает рыночный, законодательный и исследовательский потенциал по увеличению использования биотоплива. Пусть сегодня процентная доля биотоплива в мировой топливной энергетике не достигает даже одного, с таким количеством преимуществ ситуация должна сильно измениться уже в ближайшее время.

  • 92. Виды и применение трансформаторов
    Другое Физика

    Обмотки разделяют по:

    1. Назначению
    2. Основные обмотки трансформатора, к которым подводится энергия преобразуемого или от которых отводится энергия преобразованного переменного тока.
    3. Регулирующие при невысоком токе обмотки и не слишком широком диапазоне регулирования, в обмотке могут быть предусмотрены отводы для регулирования коэффициента трансформации напряжения.
    4. Вспомогательные обмотки, предназначенные, например, для питания сети собственных нужд с мощностью существенно меньшей, чем номинальная мощность трансформатора, для компенсации третей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, и т. п.
    5. Исполнению
    6. Рядовая обмотка витки обмотки располагаются в осевом направлении во всей длине обмотки. Последующие витки наматываются плотно друг к другу, не оставляя промежуточного пространства.
    7. Винтовая обмотка винтовая обмотка может представлять собой вариант многослойной обмотки с расстояниями между каждым витком или заходом обмотки.
    8. Дисковая обмотка дисковая обмотка состоит из ряда дисков, соединённых последовательно. В каждом диске витки наматываются в радиальном направлении в виде спирали по направлению внутрь и наружу на соседних дисках.
    9. Фольговая обмотка фольговые обмотки выполняются из широкого медного или алюминиевого листа толщиной от десятых долей миллиметра до нескольких миллиметров.
  • 93. Виды обмоток (презентация)
    Другое Физика
  • 94. Виды разрядов
    Другое Физика

    Натянем на двух высоких изолирующих подставках металлическую проволоку AB диаметром в несколько десятых миллиметра и соединим ее с отрицательным полюсом генератора, дающего напряжение в несколько тысяч вольт, например, хорошей электрической машине. Второй полюс генератора отведем к Земле. Мы получим своеобразный конденсатор, обкладками которого являются наша проволока и стены комнаты, которые, конечно, сообщаются с Землей. Поле в этом конденсаторе весьма неоднородно, и напряженность его очень велика вблизи тонкой проволоки. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение («корона»), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием. Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, соединенным с другим полюсом генератора. Ток в воздухе между проволокой AB и стенами переносится ионами, образовавшимися в воздухе благодаря ударной ионизации. Таким образом, свечение воздуха и появление тока указывают на сильную ионизацию воздуха по действием электрического поля.

  • 95. Виконання відкритих електропроводок на ізолюючих опорах
    Другое Физика

    Електропроводка - сукупність прокладених ізольованих проводів дрібних перетинів із застосованими до них кріпленнями, що підтримують їх та захисними конструкціями, призначені для підведення електроенергії до освітлювальних електроспоживачів. Електропроводки розділяють на внутрішні - прокладені усередині будинків і споруд, і зовнішні - прокладені по зовнішніх стінах будинків і споруд, під навісом, а також між будинками на опорах по території підприємств, мікрорайонів, дворів, присадибних ділянок, на будівельних майданчиках, до чотирьох прольотів довжиною до 25м кожний поза вулицями й доріг. Внутрішні електропроводки можуть бути відкритими, прокладеними по поверхнях стін, стель, по фермах, балках, колонах, опорам і схованими, прокладеними усередині будівельних конструкцій будинків і споруд. Вибір виду й способу прокладки електропроводок визначається проектом за умовами їх надійності, довговічності, безпеки(дотику до струмопровідних частин, пожежної й вибухової), гігієнічності, а також по естетичних і економічних міркуваннях. З урахуванням цих умов у цехах промислових підприємств і в допоміжних приміщеннях житлових будинків застосовують переважно відкриті види електропроводок із прокладкою проводів безпосередньо по поверхнях стін і стель, а також відкрито в сталевих тонкостінних, винипластовых і інших трубах, на лотках і в коробах. Відкриті види проводок застосовують у малоповерхових житлові й інших дерев'яних будинках; часто змушено застосовувати ці види проводок при реконструкції як промислових підприємств, так і житлових і суспільних будинків, коли виконати сховані проводки не завжди дозволяють будівельні конструкції будинків. На вибір виду й трас прокладки відкритих проводок в основному впливають розміщення споживачів, для яких вони призначені, середовище в приміщеннях і вимоги до захисту електропроводки від механічних ушкоджень.

  • 96. Виконання відкритих електропроводок у трубах
    Другое Физика

    При прокладці сталевих труб, що підлягають заземлення або використовуються в якості заземлюючих провідників, потрібно забезпечити безперервність електричного кола заземлення як між ними, так і між трубою і металевими корпусами електричних машин і апаратів. Для створення надійного контакту між трубою і металевими відгалужувальними та протяжними коробками або металевими кожухами апаратів використовують настановні заземлюючі гайки і контргайки, які кріплять на трубі з обох сторін стінки апарата або відгалужувальних коробки. Дряпає виступи цих гайок звертають в сторону стінки коробки або кожуха апарату. При з'єднанні труб без ущільнень за допомогою хомутів, манжет або гільз безперервність заземлення у місць з'єднання труб забезпечується приварювання до них металевих перемичок. Якщо трубу з'єднують з машиною або апаратом, застосовуючи гнучкий введення або металорукав, то до кінця труби приварюють заземлюючий прапорець, що служить для закріплення заземлюючого провідника, або встановлюють муфту типу ТР з гнучкою мідної перемичкою.

  • 97. Виконання прихованої проводки плоскими дротами
    Другое Физика

    -забрати предмети, що заважають роботі. При провадженні робіт по пробиванню отворів як ручним, так і механізованим інструментом працюючі повинні користуватися захисними окулярами. Для захисту очей від пилу слід застосовувати окуляри зі звичайним склом, для захисту від пилу й дрібних осколків - окуляри зі склом "Триплекс", при захисті від великих осколків - сітчасті окуляри без стекол. Наскрізні отвори треба пробивати інструментом довжиною, що перевищує на 200 мм товщину стіни, що пробивається. Забороняється вести роботи одночасно у двох ярусах по одній вертикалі при відсутності між ними суцільного настилу або інших обладнань, що охороняють робітників, що перебувають унизу, від можливого падіння предметів зверху. Перед установкою групових щитків, апаратів слід перевірити надійність закріплення конструкцій, на яких їх монтують. Забороняється перевіряти пальцями сполучення отворів у конструкціях, що збираються, або деталях, також залишати апарати й електричні машини після їхнього підйому незакріпленими на конструкціях. Апарати масою понад 20 кг установлюють, як правило, не менш двох робітників. При роботі з викруткою не можна тримати виріб у руках, тому що викрутка може зіскочити з голівки гвинта й поранити руки. Піднявши для монтажу наверх (на підкранові балки, підмости і т.д. ) потрібні матеріали, їх слід негайно закріпити або складувати таким чином, щоб була виключена можливість їх падіння. Спускати матеріали й вироби, а також просовувати їх через прорізи в стінах і перекриттях допускається тільки за умови відповідного огородження або під наглядом чергового. Роботи з електрозварювання й пайці проводів, наконечників і деталей виконують у захисних окулярах і брезентових рукавицях. Обойми - форми під час зварювання слід притримувати плоскогубцями, а після закінчення пайки форми можна розбирати тільки після їх охолодження. При пайку з'єднань жил способом заливання розплавленого припою у форму забороняється передавати тиглі з розплавленим припоєм з рук у руки. Затягування проводів або кабелів на висоті не можна проводити стоячи на приставних або розсувних сходах; для цього користуються лісами або спеціальними настилами. Перед монтажем освітлювальної арматури необхідно переконатися в надійності утримуючих конструкцій і їх закріпленні. Гак для люстри випробовують вантажем, рівним п'ятикратної масі світильника плюс 80 кг. Інструкція по охороні праці при експлуатації ручного електрифікованого інструмента. Перед початком роботи треба ретельно перевірити справність електроінструмента й усіх його деталей. До включення електроінструмента необхідно перевірити: - чи включений електродвигун; . - правильність і надійність кріплення робочої частини; - чи очищені конус циліндра й хвостовик робочого інструмента, якщо конус забруднений, робітник інструмент установиться не по центру й під час роботи буде вібрувати; - відповідність напруги електромережі, до якої приєднують робочий інструмент, паспортному напрузі електродвигуна; - надійність кріплення всіх нарізних сполучень; - в електровібраторів надійність затягування нарізного сполучення наконечника кожуха гнучкого вала на електродвигуні; - легкість і плавність ходіння всіх ходових деталей; - справність редуктора, для чого шпиндель електроінструмента треба кілька раз провернути від руки при виключеному двигуні; якщо редуктор справний, шпиндель обертається легко, без заїдань; - правильність обертання робочого органа. Використовувати ручний інструмент як стаціонарний верстат можна лише при установці відповідного огородження його ріжучих частин. Для приєднання інструмента до мережі застосовують шланговий кабель, що має чотири жили для двигуна трифазного струму. Відповідно четверту жилу або третю використовують для заземлення корпуса. Три жили для двигуна однофазного струму. Ручки електроінструментів і введення живильних проводів повинні бути надійно ізольовані. На всіх електроінструментах повинні бути вимикачі. Для роботи електроінструментам необхідно надягти передбачену нормами спецодяг.

  • 98. Вильгельм Конрад РЕНТГЕН. Открытие X-лучей
    Другое Физика

    Вот с такими трубками Крукса, Ленарда и других и экспериментировал Вюрцбургский профессор Вильгельм Конрад Рентген в конце 1895 г. Однажды по окончании опыта, закрыв трубку чехлом из черного картона, выключив свет, но не выключив еще индуктор, питающий трубку, он заметил свечение экрана из синеродистого бария, находящегося вблизи трубки. Пораженный этим обстоятельством, Рентген начал экспериментировать с экраном. В своем первом сообщении О новом роде лучей, датированном 28 декабря 1895 г., он писал об этих первых опытах: Кусок бумаги, покрытой платиносинеродистым барием, при приближении к трубке, закрытой достаточно плотно прилегающим к ней чехлом из тонкого черного картона, при каждом разряде вспыхивает ярким светом: начинает флюоресцировать. Флюоресценция видна при достаточном затемнении и не зависит от того, подносим ли бумагу стороной, покрытой синеродистым барием или не покрытой синеродистым барием. Флюоресценция заметна еще на расстоянии двух метров от трубки.

  • 99. Вимірювання складу речовини для підтримування оптимального технологічного процесу на теплових електричних станціях
    Другое Физика

    Дим, що проходить уздовж димоходу завдяки наявності широких прорізів 6, вільно заходить у трубу 5 і поглинає частину світла, що несе промінь від лампи 2, Завдяки цьому величина світлового потоку, що досягає термобатареї 8, буде дещо зменшеною, а це призведе до зменшення ЕРС термобатареї Ет і показань вольтметра чи потенціометра, які встановлені на щиті керування топками. Показання цих приладів функціонально залежатимуть від вмісту твердих часток у димових газах. Чим більшою буде напруга термобатареї, тим прозоріші димові гази, а значить ефективніше використовуватиметься паливо, що надходить у топку. Термобатарея, складена з шести термопар, що з'єднані послідовно, зображена на рис. 1, б. Всі кінці термопар, що підлягають опромінюванню, мають надійний тепловий контакт (але не електричний), з зачорненою металевою платівкою, розміщеною в скляному балоні, крізь стінку якого зібраний об'єктивом 7 промінь нагріває її разом з кінцями термопар. Внутрішній об'єм труби 5 повинен бути надійно відділений склом 9 від об'ємів, у яких розміщено освітлювальну лампу 2 з конденсором 3 та об'єктив 7 з термобатареєю 8.

  • 100. Вимірювання твердості за Роквеллом
    Другое Физика

    Якщо значення h розглядати як характеристику твердості, то воно свідчитиме, що мякі метали, для яких властива більша величина заглиблення алмазного конуса, мають вищу твердість, ніж тверді. Для уникнення цього протиріччя під час визначення твердості за Роквеллом від вибраної умовної величини заглиблення hmax віднімають значення h і отримують hmax - h. Оскільки твердість за Роквеллом прийнято виражати не в мм, а в поділках шкали індикатора, то величину hmax - h ділять на ціну поділки шкали С (С=0,002 мм).