Информация по предмету Физика

  • 141. Вывод уравнения Шрёдингера
    Другое Физика

    Через волновую функцию определяется относительная вероятность обнаружения частицы в различных местах пространства. На этой стадии, когда говорится только об отношениях вероятностей, волновая функция принципиально определена с точностью до произвольного постоянного множителя. Если во всех точках пространства волновую функцию умножить на одно и то же постоянное (вообще говоря, комплексное) число, отличное от нуля, то получится новая волновая функция, описывающая в точности то же состояние. Не имеет смысла говорить, что ? равна нулю во всех точках пространства, ибо такая «волновая функция» никогда не позволяет заключить об относительной вероятности обнаружения частицы в различных местах пространства. Но неопределенность в определении ? можно значительно сузить, если от относительной вероятности перейти к абсолютной. Распорядимся неопределенным множителем в функции ? так, чтобы величина |?|2dV давала абсолютную вероятность обнаружения частицы в элементе объема пространства dV. Тогда |?|2 = ?*? (?* - комплексно сопряжённая с ? функция) будет иметь смысл плотности вероятности, которую следует ожидать при попытке обнаружения частицы в пространстве. При этом ? будет определена все еще с точностью до произвольного постоянного комплексного множителя, модуль которого, однако, равен единице. При таком определении должно быть выполнено условие нормировки:

  • 142. Выключатели высокого напряжения
    Другое Физика

    Значительного увеличения отключающей способности баковых выключателей и повышения их надежности удалось достигнуть, размещая контакты выключателя в небольшой дугогасительной камере, располагаемой в общем объеме масла, находящегося в баке выключателя. На рис. 6 показана схема работы дугогасительной камеры с продольным дутьем. Такие камеры из изолирующего материала укрепляются в нижней части проходного изолятора. В верхней части камеры жестко укреплен неподвижный контакт, в который при включении входит подвижный контактный стержень. В процессе отключения при выходе стержневого контакта из неподвижного, в камере возникает дуга которая испаряя и разлагая масло создает в ней высокое давление. Это давление (67 МПа) на порядок больше, чем в выключателях с открытой дугой, благодаря малому объему дугогасительной камеры. Это давление уменьшает сечение дуги и повышает электрическую прочность дугового промежутка после перехода тока через нуль, что ускоряет гашение дуги. После того как стержень покинет камеру, происходит выхлоп газов через освободившееся отверстие, при этом захватывается масло из камеры. Это приводит к интенсивному охлаждению ствола дуги и усиленной его деионизации.

  • 143. Вынужденное явление Рамана
    Другое Физика

    Пусть пучок света падает на прозрачную среду, не содержащую никаких включений посторонних тел и тщательно очищенную. Даже при максимально возможной частоте свет пучка рассеивается во все стороны, хотя и очень слабо. Рассеяние имеет место как в газообразных, так и в жидких и твердых телах. В газах рассеяние происходит, главным образом, на атомах и молекулах, в жидкостях и кристаллахна флуктуациях и неоднородностях среды. В рассеянном свете имеются волны тех же длин, что и в падающем, но разной интенсивности в зависимости от длины волны. Это рассеяние называется релеевским по имени Релея. Помимо рассеяния света с той же длиной волны наблюдается еще слабое свечение с длиной волны, большей, чем падающая,рамановское рассеяние. Механизм этого явления можно объяснить на основе как квантовой теории, так, и классической волновой. Особенно просто выглядит квантовое описание этого явления.

  • 144. Вынужденные колебания
    Другое Физика

    Зависимость амплитуды вынужденных колебаний от частоты колебаний показана графически на рисунке слева. Кривые на графике соответствуют различным значениям параметра . Чем меньше , тем выше и правее лежит максимум резонансной кривой. При очень большом затухании (таком, что 2 > ?0) выражение для резонансной частоты становится мнимым. Это означает, что резонанс в этом случае не наблюдается с увеличением частоты амплитуда монотонно убывает.

  • 145. Вынужденные колебания. Амплитудно-частотные и фазово-частотные характеристики
    Другое Физика

     

    1. И.В. Савельев «Курс общей физики» Том I. Механика
    2. С.П. Стрелков «Механика»
    3. Д.В. Сивухин «Общий курс физики» Том I. Механика
    4. Сайт «Научно-образовательный Центр ФТИ им.А.Ф.Иоффе» (http://edu.ioffe.ru)
    5. http://media.karelia.ru/~mechanics/open/phys/do/mech/labor/pend/theory.html
  • 146. Выпрямители переменного напряжения
    Другое Физика

    Выпрямитель с выводом средней точки трансформатора. Напряжения вторичных полуобмоток u21, u22 сдвинуты по фазе относительно средней точки трансформатора на 180°. При указанной без скобок полярности напряжений u21, u22 к вентилю VD1 прикладывается прямое напряжение ( плюс на анод, минус на катод ), и вентиль открыт. Ток вентиля id1 замыкается через нагрузку Rн и верхнюю полуобмотку трансформатора. Вентиль VD2 в это время находится под обратным напряжением ( Uобр.max = 2U2m ) и ток не пропускает. Во второй полупериод (T/2...T) из-за изменения полярности напряжения u2 открывается вентиль VD2 и к нагрузке прикладывается напряжение нижней полуобмотки. Затем снова работает VD1 и т.д.. Напряжение нагрузки представляет собой следующие друг за другом положительные полусинусоиды. Недостаток: плохо используется вторичная обмотка трансформатора (работает лишь одна половина , Sт = 1.48Pн ).

  • 147. Высокотемпературная сверхпроводимость
    Другое Физика

    Явление, заключающееся в полном исчезновении электрического сопротивления проводника при его охлаждении ниже критической температуры, было открыто в 1911 году, однако практическое использование этого явления началось в середине шестидесятых годов, после того как были разработаны сверхпроводящие материалы, пригодные для технических применений. В связи с тем, что критические температуры этих материалов не превышали 20 К, все созданные сверхпроводниковые устройства эксплуатировались при температурах жидкого гелия, т.е. при 4-5 К. Несмотря на дефицитность этого хладоагента, высокие энергозатраты на его ожижение, сложность и высокую стоимость систем теплоизоляции по целому ряду направлений началось практическое использование сверхпроводимости. Наиболее крупномасштабными применениями сверхпроводников явились электромагниты ускорителей заряженных частиц, термоядерных установок, МГД-генераторов. Были созданы опытные образцы сверхпроводниковых электрогенераторов, линий электропередачи, накопителей энергии, магнитных сепараторов и др. В последние годы в различных капиталистических странах началось массовое производство диагностических медицинских ЯМР-томографов со сверхпроводниковыми магнитами, потенциальный рынок которых оценивается в несколько млрд. долларов.

  • 148. Вязкость при продольном течении
    Другое Физика

    Молекулярные модели приводят практически к тем же количественным результатам, что и собственно феноменологические модели с той лишь разницей, что константам, входящим в итоговые формулы придается определенный физический смысл. Этот результат естественен, поскольку молекулярные модели оперируют теми же исходными понятиями и представлениями, что и феноменологические модели. Важнейшими из них являются: во-первых, понятие о релаксационном спектре системы и влиянии интенсивности деформирования на релаксационные свойства системы и, во-вторых, способ перехода от конвективной системы координат к неподвижной. Первое учитывает специфику реакции полимерной системы на внешнее воздействие как вязкоупругой релаксаций; второе геометрические эффекты, обусловленные большими упругими деформациями среды Сочетанием этих факторов определяются практически все наблюдаемые или теоретически рассматриваемые особенности реологических свойств полимерных систем в любых режимах деформирования. В зависимости от геометрии деформации (например, при растяжении или при сдвиге) взаимное влияние этих факторов может быть различным, что приводит к различиям в проявлении реологических свойств системы в зависимости от схемы деформирования.

  • 149. Газовые лазеры
    Другое Физика

    Первые расчеты, касающиеся возможности создания лазеров, и первые патенты относились главным образом к газовым лазерам, так как схемы энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым был открыт рубиновый лазер, хотя вскоре был создан и газовый лазер. В конце 1960 г. Джаван, Беннет и Херриотт создали гелий-неоновый лазер, работающий в инфракрасной области на ряде линий в районе 1 мкм. В последующие два года гелий-неоновый лазер был усовершенствован, а также были открыты друг е газовые лазеры, .работающие в инфракрасной области, включая лазеры с использованием других благородных газов и атомарного кислорода. Однако наибольший интерес к газовым лазерам был вызван открытием генерации гелий-неонового лазера на красной линии 6328 А при условиях, лишь незначительно отличавшихся от условий, при которых была получена генерация в первом газовом лазере. Получение генерации в видимой области спектра стимулировало интерес не только к поискам дополнительным переходов такого типа, но и к лазерным применениям, так как при этом были открыты многие новые и неожиданные явления, а лазерный луч получил новые применения в качестве лабораторного инструмента. Два года, последовавшие за открытием генерации на линии 6328 А, были насыщены большим количеством технических усовершенствований, направленных главным образом на достижение большей мощности и большей компактности этого типа лазера. Тем временем продолжались поиски новых длин волн и были открыты многие инфракрасные и несколько новых переходов в видимой области спектра. Наиболее важным из них является открытие Матиасом и импульсных лазерных переходов в молекулярном азоте и в окиси углерода.

  • 150. Газотурбинные двигатели для электростанций
    Другое Физика
  • 151. Галилей: основание современной науки
    Другое Физика

    Эйнштейн подверг основательной критике ньютоновские концепции абсолютного пространства и абсолютного времени и пришел к выводу, что сами по себе пространство и время суть относительные категории, собственно же предметом и основой физического исследования является четырехмерный пространственно-временной континуум. Тем самым был сделан переход от 3-мерного к 4-мерному мышлению. Пассивной ареной, на которой протекают физические явления, стало пространство-время. При этом его геометрия постулировалась как псевдоевклидова, т.е. плоская, и пространство-время рассматривалось как предельно лишенное структуры и бесконечно протяженное. Пока что принципиально новым моментом по сравнению с ньютоновским пространством был переход от трехмерности к четырехмерности. В теории Ньютона абсолютное время играло роль абсолютного стандарта для всего мира, что находило свое отражение в уравнениях физики в том, что время было самостоятельным параметром. Напротив, эйнштейновская релятивизация времени и его объединение с пространством привели к равноправию пространства и времени. В дальнейшем оба понятия должны были фигурировать в законах природы симметричным образом.

  • 152. Гамма-излучение
    Другое Физика

    Испускание ядром ?-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от других видов радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно мала (~10-2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося ?0- мезона возникает гамма-излучение с энергией ~70Мэв. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми с скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением к кулоновском поле атомных ядер вещества. Тормозное гамма излучение, также как и тормозное рентгеноовское излучение, характерезуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма- излучение с максимальной энергией до нескольких десятков Гэв.

  • 153. Гамма-излучение
    Другое Физика

    Испускание ядром ?-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от других видов радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно мала (~10-2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося ?0- мезона возникает гамма-излучение с энергией ~70Мэв. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми с скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением к кулоновском поле атомных ядер вещества. Тормозное гамма излучение, также как и тормозное рентгеноовское излучение, характерезуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма- излучение с максимальной энергией до нескольких десятков Гэв.

  • 154. Гармигунчоишхо
    Другое Физика

     

    1. Санчед, ки крани С бояд махкам бошад. Бо ёрии насос ба баллони А то даме хаво фишоред, ки факи савияхои манометр 20 25 см шавад (дар тачрибахои такрори фаркиятхои гуногуни сутунхоро гирифтан тавсия карда мешавад).
    2. Замоне, ки фишор дар баллон баркарор мешавад (савияхои моеъ дар манометр бетагйир момонад), фарки савияхои моеъ h1 ро бо ёрии шкалаи манометр ба кайд гиред.
    3. Крани С-ро ба тези воз карда дар лахзае, ки савияхои моеъ дар сутунхои манометр баробар мешаванд, кранро махкам созед. Баъди он, ки фишор дар баллон аз нав баркарор мегардад (савияхои моеъ дар сутунхои манометр ба бетагйир мемонанд), фарки дуйумини савияхо h1- ро ба кайд гирад.
    4. Тачрибахоро камаш 5 маротиба такроран ба чо оваред.
    5. Киматхои h1 ва h2 ро барои хар як силсилаи тачрибахо ба формулаи (15) гузошта 1 , 2 , 3 ва гайрахоро ба хисоб гиред.
    6. Натичахои андозагирию ба тарзи хисобу китоб ба даст даромадаро дар чадвал гирд оваред.
  • 155. Гармонические колебания
    Другое Физика
  • 156. Гелий: назначение и свойства
    Другое Физика

    Данные многих опытов на животных и с участием человека были за гелиевый воздух. Но все опыты на людях были кратковременны. Как скажется на человеке долгое пребывание в гелио-кислородной среде? Точный ответ на этот вопрос дали проведенные несколько лет назад опыты советских биологов профессора А. Г. Кузнецова и кандидата медицинских наук А. Г. Дианова. Было проведено два эксперимента продолжительностью один-22, другой-30 дней, в которых участвовали молодые, абсолютно здоровые люди. Первые два дня герметическая камера была заполнена обыкновенным воздухом. За это время медики сняли фоновые данные. На третий день произошла смена среды обитания. Сначала камеру провентилировали чистым медицинским кислородом, который не только вытеснил азот, но и «вымыл» этот газ из организма участника опыта. Когда концентрация кислорода в воздухе камеры достигла 97%, его подачу прекратили и начали подавать гелий. В этот жедень в камере установилась атмосфера примерно такого состава: 22,5% O2,76% Не и 1,5% N2. Все остальное-питание, режим, одежда - осталось неизменным.

  • 157. Гелиоэнергетика: состояние и перспективы
    Другое Физика

    Высокая стоимость сырья для фотоэлектрических элементов - сверхчистого кремния - сравнимого по стоимости с обогащенным ураном для АЭС, ограничивало создание на их основе высокоэффективных установок, ограничивая их КПД до 10-12%. Однако в технологию добычи урана за полстолетия его использования вложены огромные средства, бюджет же «солнечных» исследований куда более скромен. Хлорсилановая технология производства солнечного кремния, разработанная около 35 лет назад, до настоящего времени практически не изменилась, сохранив все отрицательные черты химических технологий 50-х годов: высокая энергоемкость, низкий выход кремния, экологическая опасность.
    Основной материал для производства кремния - кремнезем в виде кварцита или кварцевого песка, составляет 12% от массы литосферы. Большая энергия связи Si-О - 464 кДж/моль обуславливает большие затраты энергии на реакцию восстановления кремния и последующую его очистку химическими методами - 250 кВтч/кг, а выход кремния составляет 6-10%.
    С 1970 года в СССР, Германии, Норвегии и США проводились исследования по созданию технологий получения кремния, исключающих хлорсилановый.
    В 1974 году фирма "Симменс" (Германия) и в 1985 году фирма "Элкем" (Норвегия), совместно с компаниями США "Дау Корнинг" и "Эксон" сообщили о завершении разработки технологии получения солнечного кремния карботермическим восстановлением особо чистых кварцитов с КПД солнечных элементов 10,8-11,8%.
    В 1990 году КПД элементов из солнечного кремния составил 14,2% по сравнению с 14,7% из хлорсиланового кремния. Технология "Симменс" предусматривала использование особо чистых кварцитов с содержанием примесей 20.10 по массе. Качество российских кварцитов одно из самых высоких в мире, а имеющиеся запасы достаточны для изготовления солнечных фотоэлектрических станций мощностью более 1000 ГВт.
    Новая технология производства кремния солнечного качества методом прямого восстановления из природно-чистых кварцитов имеет следующие характеристики: расход электроэнергии 15-30 кВтч/кг, выход кремния 80-85%, стоимость кремния 5-15 долл/кг. В случае применения этой технологии в широких масштабах стоимость солнечных элементов и модулей составит 0,7-1,4 долл/Вт и 1,0-2,0 долл/Вт соответственно, а стоимость электроэнергии 0,10-0,12 долл/кВтч. В новой технологии химические методы заменены на экологически приемлемые электрофизические методы.

  • 158. Геометрическая и физическая оптика
    Другое Физика

    Другим примером оптического прибора является фотоаппарат. В нем используется одно из свойств линзы, заключающееся в том, что при расположении предмета на расстоянии, большем двойного фокусного расстояния, линза дает его действительное уменьшенное изображение. Фотоаппарат состоит из объектива, обычно состоящего из нескольких линз, светонепроницаемого корпуса, видоискателя, диафрагмы и затвора. В светонепроницаемый корпус фотоаппарата помещают фотопленку, чувствительную к действию света. На ней объектив фотоаппарата создает действительное уменьшенное изображение фотографируемого предмета. Для получения четкого изображения предмета, который может быть расположен на разных расстояниях от фотоаппарата, объектив перемещают относительно фотопленки, результат наводки на резкость обычно контролируется через видоискатель. В зависимости от условий освещенности и чувствительности фотопленки путь свету от объектива к фотопленке открывается с помощью затвора на определенный интервал времени, обычно на сотые доли секунды. Световой поток регулируется и кольцевым отверстием в диафрагме за объективом, диаметр которого можно плавно изменять.

  • 159. Геометрия зрения, иллюзии. Морис Эшер
    Другое Физика

    В школе учился неважно. Оценки по всем предметам у Мориса были плохими за исключением рисования. Учитель рисования художник Самуэль де Мескита, оказавший на молодого человека огромное влияние (Эшер поддерживал дружеские отношения с Мескитой вплоть до 1944 года, когда Мескита, еврей по происхождению, был вместе с семьёй уничтожен нацистами), заметил талант у мальчика и научил его делать гравюры по дереву. Голландский мальчик - Мориц Корнелис Эшер с детства был немного странным. Бесцветный, замкнутый и заикающийся, он плохо учился и был подвержен двум маниям. Первую можно назвать "тягой к падению" - все вертикальные, устремляющиеся ввысь формы, имели для парня пугающую и одновременно восхитительную притягательность. Вторую манию можно назвать построением "безупречного бутерброда". В 1913 году Эшер в школе религии знакомится с парнем, по имени Бас Кист, который станет его лучшим другом. Оба интересовались технологией печати. В 1916 году Эшер выполняет свою первую графическую работу, гравюру на фиолетовом линолеуме - портрет своего отца Г. А. Эшера. С 19 лет Эшер посещает мастерскую художника Герта Стигемана, имевшего печатный станок. На этом станке были отпечатаны первые гравюры Эшера. Его отец, инженер-гидравлик, хотел, чтобы сын получил солидную профессию, и в 1919 году Эшер поступает в Гаарлемское училище архитектуры и декоративного искусства. В 1922 году, проучившись в училище два года, Эшер переезжает в Италию, где проживет 13 лет.

  • 160. Геотермальные электростанции
    Другое Физика

    На данный момент, все большее распространение получают ГеоТЭС со смешанным циклом работы. Появившаяся несколько лет назад новая, разработанная австралийской компанией Geodynamics Ltd., революционная технология строительства ГеоТЭС - технология Hot-Dry-Rock, существенно повышает эффективность преобразования энергии геотермальных вод в электроэнергию. Суть этой технологии заключается в следующем. До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара. Австралийцы отступили от этого принципа и решили сами создать подходящий "гейзер". Для этого они отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру. Поэтому если на такую глубину через скважину закачать воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность. После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл, таким образом, повторится. (Смотри рисунок 3)