Информация по предмету Физика
-
- 341.
Квантовые компьютеры на ионах в многозонных ловушках
Другое Физика
- 341.
Квантовые компьютеры на ионах в многозонных ловушках
-
- 342.
Квантовые свойства макроскопических объектов
Другое Физика В отличие, например, от вакуумной электроники, использующей для преобразования электромагнитной энергии потоки свободных электронов, в КЭ имеют дело со связанными электронами, входящими в состав атомных систем: атомов, молекул, кристаллов. Согласно законам квантовой механики, электроны в атоме и, следовательно, атомная система в целом могут находиться только в определённых энергетических состояниях, характеризуемых дискретным рядом значений энергии 0, 1, 2, ... , называемых энергетическими уровнями. Изменение внутренней энергии атомной системы сопровождается квантовым переходом электрона с одного энергетического уровня на другой. При этом система излучает или поглощает порцию электромагнитной энергии квант с частотой mn и энергией hmn= m - n , где h постоянная Планка, m и n - конечный и начальный энергетические уровни. Излучение квантов (соответствующее переходам электронов с верхних энергетических уровней на нижние) может происходить как самопроизвольно в отсутствие внешнего поля (спонтанное излучение), так и вынужденно в присутствии поля (вынужденное излучение), поглощение же квантов (соответствующие переходам с нижних уровней на верхние) всегда является процессом вынужденным. Существенно, что в результате вынужденных излучат. переходов первичная электромагнитная волна усиливается за счёт энергии кванта вынужденного излучения, тождественных этой первичной волен по частоте, фазе, направлению распространения и характеру поляризации. Именно эта особенность вынужденного излучения имеет основополагающее значение в КЭ, позволяя использовать такое излучение для усиления и генерации электромагнитных волн. Когерентное усиление электромагнитной волны возможно только в том случае, если число возбужденных электронов (населенность более высоких энергетических уровней) превышает число невозбужденных (населённость более низких уровней). В веществе, находящемся в состоянии термодинамического равновесие, это условие не выполняется: в соответствии с Больцмана распределением населенность верхних энергетических уровней всегда меньше чем нижних и, следовательно, поглощение преобладает над вынужденным излучением, в результате чего проходящая через вещество первичная волна ослабляется. Для того чтобы вещество усиливало распространяющуюся в нём электромагнитную волну, необходимо перевести его в возбужденное состояние, в котором хотя бы для двух уровней населенность верхнего оказалась выше , чем нижнего. Такое состояние называется состоянием с инверсией населённости в веществе и является предположенный современными учёными Н.Г. Басовым и А. М. Прохоровым в 1955 «Метод трёх уровней». Сущность этого метода состоит в том, что электроны в энергетическом спектре которых имеется 3 энергетических уровня 1, 2, 3, переводятся в возбужденное состояние под действием мощного вспомогательного излучения накачки. При достаточной интенсивности накачки происходит переход электронов с уровня 1 на 3, до так называемого насыщения, когда населённость этих уровней становится одинаковой. При этом для одной пары уровней 1, 2 или 2, 3 будет иметь место инверсия населённостей. Существуют и другие методы создания инверсии населённости: сортировка молекул в молекулярных и атомных пучках в неоднородном электрическом или магнитном поле; инжекция неравновесных носителей заряда в электронно-дырочный переход; осуществление неупругих соударение атомов в смеси газов; химическое возбуждение и другие.
- 342.
Квантовые свойства макроскопических объектов
-
- 343.
Квантовые эффекты в ядерной физике
Другое Физика Многочисленные расчеты предсказывают, а эксперименты подтверждают, что турбулентность синхронизует плазменный лазер - все дальнейшее далеко выходит за рамки текущего исследования и не будет здесь рассматриваться. Плазменное образование перманентно усиливает расширяющийся вихрь, и этот процесс может повторяться многократно. Резонатор неустойчив относительно гравитационных возмущений. Силовое поле трансформирует вращательный гидродинамический удар, поскольку любое другое поведение нарушало бы изотропность пространства. Гравитирующая сфера, при адиабатическом изменении параметров, синхронизует экранированный сверхпроводник - все дальнейшее далеко выходит за рамки текущего исследования и не будет здесь рассматриваться. Объект, вследствие квантового характера явления, облучает ускоряющийся поток при любом их взаимном расположении.
- 343.
Квантовые эффекты в ядерной физике
-
- 344.
Квантовый размерный эффект для электронов и фононов
Другое Физика
- 344.
Квантовый размерный эффект для электронов и фононов
-
- 345.
Кварки
Другое Физика Возможным источником кварков одно время считали водные бассейны Земли. Логично предположить, что кварки, возникающие при взаимодействии космических частиц с атомными ядрами атмосферы, становятся центрами конденсации водяных паров, падают вместе с дождем на землю и в конце концов попадают в озера, моря и океаны. Концентрация кварков в земных водоемах должна непрерывно повышаться с течением времени. Это связано с тем, что описанный механизм образования кварков действует непрерывно. Кроме того, считается, что кварки не могут распадаться. Это связано с дробностью заряда, и можно предполагать, что по крайней мере один из кварков, обладающий наименьшей массой, стабилен, так как ему не на что распадаться. В то же время, более тяжелый кварк может превращаться в легкий без нарушения закона сохранения электрического и барионного зарядов.
- 345.
Кварки
-
- 346.
Кварки
Другое Физика Для выделения кварков из огромного числа других, рождающихся в мишени ускорителя, можно воспользоваться их специфическими свойствами, обусловленными дробностью электрического заряда. Например, пониженной ионизирующей способностью. Ионизирующая способность заряженной частицы изменяется пропорционально квадрату ее электрического заряда. Так как кварки имеют заряд, равный 1/3 или 2/3 заряда электрона, ионизирующая способность кварков составляет соответственно 1/9 или 4/9 ионизирующей способности электронов. Такие опыты были действительно предприняты сначала на ускорителях в ЦЕРНе и в Брукхейвенской лаборатории, затем в Серпухове, а потом снова в ЦЕРНе на ускорителе протонов до энергии 400 ГэВ и в Батавии на ускорителе протонов до энергии 500 ГэВ, но они не дали положительного результата. Это означает, что либо масса кварков превышает 15 протонных масс, либо они рождаются с гораздо меньшей вероятностью, чем предполагали, либо, наконец, кварков в свободном виде нет вообще.
- 346.
Кварки
-
- 347.
Кинематика специальной теории относительности
Другое Физика Поскольку важная цель науки - нахождение причинно - следственных связей явлений, то позитивный момент классического подхода заключается в отделении объекта исследования от остальной Вселенной. В подавляющем большинстве случаев движение глаз наблюдателя не оказывает влияния на протекающий процесс, и уж тем более на всю оставшуюся Вселенную. Конечно, бывают "кажущиеся эффекты", но от них избавляются градуировкой приборов или пересчетом, чтобы сосредоточиться именно на исследуемом процессе. Классические понятия кинематики фактически были введены Ньютоном для определения независимых от исследуемого процесса реперных точек и эталонов. Это создает базу для единого описания всех феноменов, стыковки разных областей знания и упрощения описания. Как показало развитие науки, классические представления кинематики не приводят к внутренним логическим противоречиям. Интуитивно классические понятия совпадают с тем, что дано нам в ощущениях и не пользоваться этим просто глупо (все равно, что силиться ходить на ушах). Теория относительности же пытается повязать время и пространство в некоторый "единый объект", т.е. помимо кинематического понятия скорости возникает дополнительная связь, вовсе не связанная с исследуемым процессом. При этом заявляется, что свойства этого пространственно-временного объекта, во-первых, связаны со скоростью света в пустоте (почему, например, не со скоростью движения Земли или со скоростью звука в воде?), а, во-вторых, зависят от движения наблюдателя. Данная зависимость объявляется не кажущимся, а объективным эффектом. Это уж совсем странно, что решение наблюдателя изменить свою скорость приводит к мгновенному изменению свойств остальной Вселенной, не говоря уже о том, что разных наблюдателей может быть много и для одной и той же точки пространства получаются различные якобы объективные характеристики. Для прикрытия очевидного прокола произносится фраза об однозначной связи Ньютоновых и Лоренцовых координат. Однако разных математических связей можно ввести сколько угодно, но это вовсе не гарантирует наличие какого бы то ни было физического смысла у выбранных преобразований. Для целей спасения теории относительности (например, в парадоксе близнецов) также изобретен вспомогательный метод диаграмм, напоминающий ИНСТРУКЦИЮ "Как левой пяткой, обернув ногу дважды вокруг шеи, почесать правое ухо и вызвать при этом те же ощущения (их надо только заранее выяснить), что и у нормального человека". Обращает на себя внимание следующий факт. В классической физике любой логически непротиворечивый путь приводит к одному и тому же объективному результату. Каждый наблюдатель может представить себе рассуждения любого другого наблюдателя и даже воспользоваться ими. Иное дело в теории относительности: некоторые из совершенно однотипных рассуждений приходится постулировать неверными, то есть выбор пути подгонять под требуемые результаты. Вообще говоря, подобные методы наукообразных заклинаний, могут завуалировать проблемы только при рассмотрении движения двух объектов вдоль одной прямой. Если число наблюдателей больше двух или имеем трехмерное движение, то сразу проявляются проблемы. Например, пришлось бы постулировать, что возраст объекта A равен возрасту объекта B, возраст объекта B равен возрасту объекта C, но возраст объектов A и C различен. Критику релятивистского понятия времени начнем с парадокса одногодок.
- 347.
Кинематика специальной теории относительности
-
- 348.
Кипение
Другое Физика Кипение классифицируют по следующим признакам:
- пузырьковое и пленочное;
- по виду конвекции у поверхности теплообмена. При свободной и вынужденной конвекции;
- по отношению к температуре насыщения. Без недогрева и кипение с недогревом;
- По ориентации поверхности кипения в пространстве. На горизонтальных наклонных и вертикальных поверхностях;
- По характеру кипения. Развитое и неразвитое, неустойчивое кипение.
- 348.
Кипение
-
- 349.
Кінетична і потенційна енергія
Другое Физика А між тим науково-технічний прогрес тільки ще набирав темп; науково-технічна революція XX ст. ще тільки назрівала. Відкриття електрона, створення і становлення квантової теорії, виникнення атомної фізики, а потім фізики твердого тіла - все це зумовило народження і швидкий розвиток електроніки. Спочатку виникла вакуумна електроніка (електронні лампи, електронно-променеві трубки); в 50-х роках стала розвиватися напівпровідникова електроніка (у 1948 р. було винайдено транзистор); в 60-х роках народилася мікроелектроніка. Прогрес в області елект ¬ Ронік привів до створення досконалих систем радіозв'язку, радіоуправління, радіолокації. Розвивається телебачення, змінюються один за одним покоління ЕОМ (зростає їх швидкодію, удосконалюється пам'ять, розширюються функціональні можливості), з'являються промислові роботи. У 1957 р. відбувся виведення на навколоземну орбіту першого штучного супутника Землі; 1961 р. - політ Ю.А. Гагаріна - першого космонавта планети; 1969 р. - перші люди на Місяці. Нас майже вже не дивують вражаючі успіхи космічної техніки. Ми звикли до запусків штучних супутників Землі (їх число давно перевалило за тисячу); стають все більш звичними польоти космонавтів на пілотованих космічних кораблях, їх багатоденні вахти на орбітальних станціях. Ми познайомилися з зворотною стороною Місяця, отримали фотознімки поверхні Венери, Марса, Юпітера, комети Галлея.
- 349.
Кінетична і потенційна енергія
-
- 350.
Классификация пароперегревателей
Другое Физика Пароперегреватель большей частью располагается в горизонтальном газоходе и непосредственно за ним - на входе в конвективную шахту. В котлах большой мощности глубина шахты и примерно равная ей высота горизонтального газохода имеют значительные размеры, что при большой скорости продуктов сгорания приводит к увеличению неравномерности скоростного поля и поля концентрации, особенно крупных фракций золы в поворотной камере и на входе в конвективную шахту. При расположении змеевиков перпендикулярно фронту интенсивному золовому износу подвержены все змеевики и объем ремонтных работ возрастает, в то время как в пароперегревателях с расположением змеевиков параллельно фронту износ сосредоточивается лишь на небольшой группе труб, расположенных у задней стены газохода. Условия охлаждения труб основных и промежуточных перегревателей различны. Основные перегреватели охлаждаются, паром с начала растопки котла, поэтому их располагают не только в конвективных газоходах, но и в топке. В промежуточные пароперегреватели пар поступает лишь при пуске турбины, а потому длительное время они лишены охлаждения. То же наблюдается при аварийном останове котла. Во избежание перегрева металла труб промежуточный пароперегреватель выполняют преимущественно конвективным, реже ширмовым и располагают его в зоне умеренного обогрева при температуре продуктов сгорания не выше 850°С. Существуют схемы с охлаждением промежуточных пароперегревателей при растопке и аварийных остановах свежим паром через редукционно-охладительную установку (РОУ).
- 350.
Классификация пароперегревателей
-
- 351.
Классификация радиоволн и параметры антенных устройств
Другое Физика На втором этапе (примерно до 1940года), с появлением и развитием таких областей прикладной радиотехники как: радиосвязь и радиовещание, радионавигация и радиолокация, возникла необходимость в использовании более высокого диапазона радиочастот. В частности, стали осваиваться СВ, имеющие те же преимущества и недостатки (но менее выраженные), что и ДВ, а также KB, которые на большие расстояния распространяются путём многократного отражения от земной поверхности и ионосферы. Радиоволны КВ диапазона оказались пригодными не только для глобальной радиосвязи и радиовещания, но и для различных систем подвижной и радиолюбительской связи. Однако в точку приёма радиоволны КВ диапазона как правило приходят различными путями, что приводит к явлению интерференции ЭМВ и, как следствие, к быстрым и глубоким изменениям уровня принимаемого сигнала.
- 351.
Классификация радиоволн и параметры антенных устройств
-
- 352.
Классическая механика её роль в науке
Другое Физика Огромная заслуга в развитии механики принадлежала петербургскому академику Леонарду Эйлеру (17071783) и парижскому академику Жозефу Луи Лагранжу (17361813). «Механика» Эйлера появилась в 1736 г. в Петербурге в 2-х томах. Его же «Теория движения твердого тела», рассматриваемая как 3-й том механики, вышла в 1765 г. Эйлер определяет механику как науку о движении, изложенную аналитически (методами анализа), «благодаря чему только и можно достигнуть полного понимания вещей». Эйлер писал, что после изучения «Начал» он как ему казалось, достаточно ясно понял решение многих задач, однако задач, чуть отступающих от них, уже решить не мог. Тогда он те же положения переработал для собственной пользы методами анализа и значительно лучше понял суть дела. Аналогичную работу проделал Эйлер с другими сочинениями, относящимися к механике. «При занятиях я не только встретился с целым рядом вопросов, ранее совершенно не затронутых, которые удачно разрешил, - писал Эйлер, - но и нашел много новых методов, благодаря которым не только механика, но и сам анализ, по-видимому, в значительной степени обогатился. Таким образом, и возникло это сочинение, в котором я изложил теоретическим методом и в удобном порядке как то, что я нашел у других в их работах о движении, так и то, что я получил в результате своих размышлений».
- 352.
Классическая механика её роль в науке
-
- 353.
КМ
Другое Физика - Поляризаторро давр занонда, дар галванометр майли зиёдтарини акрабаки онро мукаррар менамоем. Дар ин маврид кунчи байни мехвархои полярихатор (Р) ва анализатор (А)-ро ба сифати сифр (0) кабул мекунем. Нишондоди галванометрро ба кайд мегирем: I=i0
- Нишондодхои галванометрро пас аз хар 10о и гардиши поляризатор аз 0 то 360о кайд мекунем.
- Бузургихои ченкардаро дар чадвали гирд меоварем. Графики вобастагии фоточараён iтач ба U ва Lназ = ioCosU-ро месозем.
- 353.
КМ
-
- 354.
Когенерация
Другое Физика Каждый, кто сталкивался с газовыми генераторами электричества, наверняка задумывался о том, что получаемое тепло можно как-то утилизировать. Эта идея лежит в основе когенераторных электростанций. Они используют энергию газа для выработки не только электричества, но и тепловой энергии. В процессе работы когенераторной установки вырабатывается электричество, пар и горячая вода. Это дает возможность использовать когенераторные электростанции не только в качестве генераторов электроэнергии, но и как установки для отопления и горячего водоснабжения помещений. За счет такой высокой эффективности и роста тарифов крупных теплоэнергетических компаний когенераторные установки окупаются довольно быстро. Также стоит подчеркнуть выгодность когенераторных электростанций в плане капитальных вложений. Крупнейшими производителями когенераторных установок на сегодняшний день являются: Caterpillar, Deutz AG, General Electric, GE Jenbacher, Kawasaki, MAN B&W, Mitsubishi Heavy Industries, Ltd., Solar Turbines, Turbomach SA, Wartsila, Waukesha Engine Division. И глядя на эти названия трудно не согласиться с тем, что когенерация- следующий шаг в рациональном энергопотреблении и утилизации тепла.
- 354.
Когенерация
-
- 355.
Колебания
Другое Физика Колебательные процессы широко распространены в природе и технике: вибрация натянутой струны, движение поршня дизеля и ножей косилки, сутоные и годиные изменения температуры воздуха, морские приливы и отливы, волнение водной поверхности, биение сердца, дыхание, тепловое движение ионов кристаллиеской решётки твёрдого тела, переменный ток и его электромагнитное поле, движение электронов в атоме, и, конено, движение асового маятника. Рассмотрим колебания математиеского маятника:
- 355.
Колебания
-
- 356.
Колебания и волны
Другое Физика Следует заметить, что в образования поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения, которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точки поверхности жидкости происходит деформация этой поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде тем больше, чем больше искривлена поверхность, т.е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (низких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности жидкости и соответственного ей поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около 1 см, т.е. для более коротких волн (называемых капиллярными волнами) преобладают силы поверхностного натяжения, а для более длинных - сила тяжести.
- 356.
Колебания и волны
-
- 357.
Колебания пусковой установки
Другое Физика Требуется:
- Получить уравнение малых колебаний ракеты с направляющей с учетом воздействия со стороны корабля.
- Определить закон изменения момента управляющего двигателя Мупр(t), обеспечивающего минимум среднего значения угловой скорости пусковой установки к заданному моменту времени t = tк. Мощность двигателя ограничена ( | Мупр.|
- 357.
Колебания пусковой установки
-
- 358.
Колебания системы Атмосфера - Океан - Земля и природные катаклизмы. Резонансы в Солнечной системе, нарушающие периодичность природных катаклизмов
Другое Физика В 1988 г. удалось провести аналогичные расчеты для внутренних планет. Сложность заключалась в том, что прямое численное интегрирование уравнений движения этих планет на больших промежутках времени недоступно даже лучшим ЭВМ из-за слишком быстрого движения этих планет по орбите и, следовательно, слишком быстрого «ухода» от начальных условий. Сначала следовало как-то преобразовать исходные уравнения, используя методы теории возмущений. В результате система уравнений Ньютона для совокупности планет преобразовалась в систему из 150000 уравнений, описывающую не точное движение планет, а среднее значение их положений на орбите. С помощью суперкомпьютера НАСА за 6 ч. работы удалось рассчитать орбиты планет на 900 млн. лет вперед. Результат получился удивительным: если для больших планет движение оказалось регулярным, то для внутренних планет Меркурия, Венеры, Земли и Марса поведение траекторий неустойчиво. Расчеты показывают, что расстояние между двумя изначально близкими орбитами этих планет увеличивается втрое каждые 5 млн. лет, поэтому невозможны никакие точные предсказания их орбит на период свыше 100 млн. лет. Ошибка всего в 0,00000001% в начальных условиях приводит через 10 млн. лет к относительному расхождению орбит в 0,0000001%, но становится 100-процентной через 100 млн.лет!
- 358.
Колебания системы Атмосфера - Океан - Земля и природные катаклизмы. Резонансы в Солнечной системе, нарушающие периодичность природных катаклизмов
-
- 359.
Колебания системы " Атмосфера - Океан - Земля" и природные катаклизмы
Другое Физика Обычно строятся нелинейные модели взаимодействия океана с пассатными ветрами и исследуется поведение моделей в зависимости от амплитуды сезонного цикла температуры воды и скорости течения, параметров, характеризующих силу трения атмосферы с океаном, вариаций термоклина и т.п. В частности, показано, что при изменении во времени параметров сцепления и сезонного воздействия на экваторе возникают совместные колебания аномалий температуры океана, скорости течения и глубины термоклина с периодом 3 4 года и их гармоники. Когда температура воды и скорости течения изменяются в течение года, предельный цикл становится странным аттрактором зоной фазового пространства, к которой притягиваются фазовые траектории и в которой изображающая точка совершает хаотическое движение, лишенное свойства повторяемости. Наличие хаоса расширяет и размазывает главные энергетические пики в спектре и сдвигает их в сторону низких частот. Годовые вариации основного состояния не только порождают нерегулярности периода колебаний, но и приводят к синхронизации колебаний с годовым циклом, в результате чего появляются субгармоники с периодом 3,4 и 5 лет.
- 359.
Колебания системы " Атмосфера - Океан - Земля" и природные катаклизмы
-
- 360.
Коливання фізичного маятника
Другое Физика Не будемо заходити глибоко в останнє поняття, оскільки, незважаючи на величезний прорив науки і технологій на рубежі ХХ-ХХІ століть, до цих пір ніхто, ні Ньютон, ні Галілей, ні вчені сучасності не дали вичерпної відповіді на питання чому існує гравітація, при наявності сотень відповідей на питання як діє гравітація.
- 360.
Коливання фізичного маятника